Kevan Dettelbach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6122925/publications.pdf

Version: 2024-02-01

25 papers 1,402 citations

567281 15 h-index 24 g-index

25 all docs

25 docs citations

25 times ranked

2518 citing authors

#	Article	IF	CITATIONS
1	Self-driving laboratory for accelerated discovery of thin-film materials. Science Advances, 2020, 6, eaaz8867.	10.3	306
2	Electrolysis of Gaseous CO ₂ to CO in a Flow Cell with a Bipolar Membrane. ACS Energy Letters, 2018, 3, 149-154.	17.4	265
3	Highâ€Throughput Synthesis of Mixedâ€Metal Electrocatalysts for CO ₂ Reduction. Angewandte Chemie - International Edition, 2017, 56, 6068-6072.	13.8	131
4	Photoelectrochemical oxidation of organic substrates in organic media. Nature Communications, 2017, 8, 390.	12.8	123
5	On the Electrolytic Stability of Iron-Nickel Oxides. CheM, 2017, 2, 590-597.	11.7	104
6	Photodeposited Amorphous Oxide Films for Electrochromic Windows. CheM, 2018, 4, 821-832.	11.7	95
7	A self-driving laboratory advances the Pareto front for material properties. Nature Communications, 2022, 13, 995.	12.8	55
8	Near-infraredâ€"driven decomposition of metal precursors yields amorphous electrocatalytic films. Science Advances, 2015, 1, e1400215.	10.3	48
9	Brass and Bronze as Effective CO ₂ Reduction Electrocatalysts. Angewandte Chemie - International Edition, 2017, 56, 16579-16582.	13.8	43
10	Structural Characteristics and Eutaxy in the Photo-Deposited Amorphous Iron Oxide Oxygen Evolution Catalyst. Chemistry of Materials, 2015, 27, 3462-3470.	6.7	28
11	Highâ€Throughput Synthesis of Mixedâ€Metal Electrocatalysts for CO ₂ Reduction. Angewandte Chemie, 2017, 129, 6164-6168.	2.0	28
12	Photodeposited ruthenium dioxide films for oxygen evolution reaction electrocatalysis. Journal of Materials Chemistry A, 2017, 5, 1575-1580.	10.3	24
13	On How Experimental Conditions Affect the Electrochemical Response of Disordered Nickel Oxyhydroxide Films. Chemistry of Materials, 2016, 28, 5635-5642.	6.7	22
14	Stabilizing Copper for CO ₂ Reduction in Low-Grade Electrolyte. Inorganic Chemistry, 2018, 57, 14624-14631.	4.0	21
15	Quantifying defects in thin films using machine vision. Npj Computational Materials, 2020, 6, .	8.7	18
16	Photodecomposition of Metal Nitrate and Chloride Compounds Yields Amorphous Metal Oxide Films. Journal of the American Chemical Society, 2017, 139, 18174-18177.	13.7	17
17	Photoelectrochemical Decomposition of Lignin Model Compound on a BiVO ₄ Photoanode. ChemSusChem, 2020, 13, 3622-3626.	6.8	17
18	Brass and Bronze as Effective CO ₂ Reduction Electrocatalysts. Angewandte Chemie, 2017, 129, 16806-16809.	2.0	15

#	Article	IF	CITATIONS
19	Kinetic phases of Ag–Cu alloy films are accessible through photodeposition. Journal of Materials Chemistry A, 2019, 7, 711-715.	10.3	12
20	Rapid Quantification of Film Thickness and Metal Loading for Electrocatalytic Metal Oxide Films. Chemistry of Materials, 2017, 29, 7272-7277.	6.7	11
21	Multiple C–H Activations of Linear Alkanes by Various (η ⁵ -Cyclopentadienyl)W(NO)(CH ₂ CMe ₃) ₂ Complexes. Organometallics, 2017, 36, 2714-2726.	2.3	6
22	Spinâ€coated epoxy resin embedding technique enables facile SEM/FIB thickness determination of porous metal oxide ultraâ€thin films. Journal of Microscopy, 2018, 270, 302-308.	1.8	6
23	Tracking precursor degradation during the photo-induced formation of amorphous metal oxide films. Journal of Materials Chemistry A, 2018, 6, 4544-4549.	10.3	6
24	Frontispiece: Highâ€Throughput Synthesis of Mixedâ€Metal Electrocatalysts for CO ₂ Reduction. Angewandte Chemie - International Edition, 2017, 56, .	13.8	1
25	Frontispiz: Highâ€Throughput Synthesis of Mixedâ€Metal Electrocatalysts for CO ₂ Reduction. Angewandte Chemie, 2017, 129, .	2.0	0