Joerg Gromoll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6122750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine learning based prediction models in male reproductive health: Development of a proofâ€ofâ€concept model for Klinefelter Syndrome in azoospermic patients. Andrology, 2022, 10, 534-544.	1.9	6
2	A GWAS in Idiopathic/Unexplained Infertile Men Detects a Genomic Region Determining Follicle-Stimulating Hormone Levels. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 2350-2361.	1.8	4
3	Pituitary response to GnRH stimulation tests in different <i>FSHB</i> -211 G/T genotypes. Human Reproduction, 2021, 36, 1376-1382.	0.4	4
4	Healthy ageing and spermatogenesis. Reproduction, 2021, 161, R89-R101.	1.1	23
5	O-118 New insight into the genetic contribution of common variants to the development of extreme phenotypes of unexplained male infertility: a multicenter genome-wide association study. Human Reproduction, 2021, 36, .	0.4	0
6	FSHB Genotype Identified as a Relevant Diagnostic Parameter Revealed by Cluster Analysis of Men With Idiopathic Infertility. Frontiers in Endocrinology, 2021, 12, 780403.	1.5	3
7	Testicular blood supply is altered in the 41,XXY* Klinefelter syndrome mouse model. Scientific Reports, 2020, 10, 14369.	1.6	5
8	A germ cellâ€specific ageing pattern in otherwise healthy men. Aging Cell, 2020, 19, e13242.	3.0	27
9	Molecular Aging Markers in Patients with Klinefelter Syndrome. , 2020, 11, 470.		4
10	Testicular Microlithiasis Is Associated with Impaired Spermatogenesis in Patients with Unexplained Infertility. Urologia Internationalis, 2020, 104, 610-616.	0.6	12
11	Does the <i>FSHB</i> c.â€211G>T polymorphism impact Sertoli cell number and the spermatogenic potential in infertile patients?. Andrology, 2020, 8, 1030-1037.	1.9	11
12	41, XX Y * male mice: An animal model for Klinefelter syndrome. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2020, 184, 267-278.	0.7	5
13	Response to: Xâ€linked miRâ€506 family miRNAs promote FMRP expression in mouse spermatogonia. EMBO Reports, 2020, 21, e49354.	2.0	1
14	Ageing in men with normal spermatogenesis alters spermatogonial dynamics and nuclear morphology in Sertoli cells. Andrology, 2019, 7, 827-839.	1.9	26
15	High-resolution analysis of germ cells from men with sex chromosomal aneuploidies reveals normal transcriptome but impaired imprinting. Clinical Epigenetics, 2019, 11, 127.	1.8	30
16	Pharmacogenetics of FSH Action in the Male. Frontiers in Endocrinology, 2019, 10, 47.	1.5	33
17	FSHB â^'211 G>T Polymorphism as Predictor for TESE Success in Patients With Unexplained Azoospermia. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2315-2324.	1.8	25
18	A micro <scp>RNA</scp> cluster in the Fragileâ€X region expressed during spermatogenesis targets <scp>FMR</scp> 1. EMBO Reports, 2019, 20, .	2.0	25

#	Article	IF	CITATIONS
19	Is the <i>FSHR</i> 2039A>G variant associated with susceptibility to testicular germ cell cancer?. Andrology, 2018, 6, 176-183.	1.9	6
20	The impact of FSH receptor polymorphism on time-to-pregnancy: a cross-sectional single-centre study. BMC Pregnancy and Childbirth, 2018, 18, 272.	0.9	6
21	<i>De novo</i> methylation in male germ cells of the common marmoset monkey occurs during postnatal development and is maintained <i>in vitro</i> . Epigenetics, 2017, 12, 527-539.	1.3	26
22	Testosterone and androgen receptor gene polymorphism are associated with confidence and competitiveness in men. Hormones and Behavior, 2017, 92, 93-102.	1.0	35
23	An alternative interpretation of cellular †selfish spermatogonial selection'―clusters in the human testis indicates the need for 3â€Dâ€analyses. Andrology, 2016, 4, 213-217.	1.9	4
24	Interindividual Variation in DNA Methylation at a Putative POMC Metastable Epiallele Is Associated with Obesity. Cell Metabolism, 2016, 24, 502-509.	7.2	110
25	The human <i>RHOX</i> gene cluster: target genes and functional analysis of gene variants in infertile men. Human Molecular Genetics, 2016, 25, ddw313.	1.4	25
26	On the origin of sperm epigenetic heterogeneity. Reproduction, 2016, 151, R71-R78.	1.1	53
27	<i>FSHB</i> â€211G>T stratification for follicleâ€stimulating hormone treatment of male infertility patients: making the case for a pharmacogenetic approach in genetic functional secondary hypogonadism. Andrology, 2015, 3, 1050-1053.	1.9	20
28	Differences in Signal Activation by LH and hCG are Mediated by the LH/CG Receptor's Extracellular Hinge Region. Frontiers in Endocrinology, 2015, 6, 140.	1.5	36
29	Epigenetic germline mosaicism in infertile men. Human Molecular Genetics, 2015, 24, 1295-1304.	1.4	58
30	Gene Expression Patterns in Relation to the Clinical Phenotype in Klinefelter Syndrome. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E518-E523.	1.8	80
31	The FSHB â~'211G>T variant attenuates serum FSH levels in the supraphysiological gonadotropin setting of Klinefelter syndrome. European Journal of Human Genetics, 2015, 23, 700-703.	1.4	18
32	Direct but No Transgenerational Effects of Decitabine and Vorinostat on Male Fertility. PLoS ONE, 2015, 10, e0117839.	1,1	15
33	Non-Viral Generation of Marmoset Monkey iPS Cells by a Six-Factor-in-One-Vector Approach. PLoS ONE, 2015, 10, e0118424.	1.1	39
34	Bringing epigenetics into the diagnostics of the andrology laboratory: challenges and perspectives. Asian Journal of Andrology, 2014, 16, 669.	0.8	39
35	Differences between lutropinâ€mediated and choriogonadotropinâ€mediated receptor activation. FEBS Journal, 2014, 281, 1479-1492	2.2	23
36	Intratesticular testosterone is increased in men with Klinefelter syndrome and may not be released into the bloodstream owing to altered testicular vascularization - a preliminary report. Andrology, 2014, 2, 275-281.	1.9	54

#	Article	IF	CITATIONS
37	Epigenetic regulation of the RHOX homeobox gene cluster and its association with human male infertility. Human Molecular Genetics, 2014, 23, 12-23.	1.4	45
38	Germ cell loss is associated with fading Lin28a expression in a mouse model for Klinefelter's syndrome. Reproduction, 2014, 147, 253-264.	1.1	21
39	Separation of somatic and germ cells is required to establish primate spermatogonial cultures. Human Reproduction, 2014, 29, 2018-2031.	0.4	55
40	microRNA miR-513a-3p acts as a co-regulator of luteinizing hormone/chorionic gonadotropin receptor gene expression in human granulosa cells. Molecular and Cellular Endocrinology, 2014, 390, 65-72.	1.6	33
41	DNA methylation in spermatozoa as a prospective marker in andrology. Andrology, 2013, 1, 731-740.	1.9	70
42	Aberrant transcription of the LHCGR gene caused by a mutation in exon 6A leads to Leydig cell hypoplasia type II. Molecular and Cellular Endocrinology, 2013, 366, 59-67.	1.6	28
43	The relation between sex hormone levels, the androgen receptor CAGn-polymorphism and depression and mortality in older men in a community study. Psychoneuroendocrinology, 2013, 38, 2083-2090.	1.3	16
44	Comprehensive sequence analysis of the NR5A1 gene encoding steroidogenic factor 1 in a large group of infertile males. European Journal of Human Genetics, 2013, 21, 1012-1015.	1.4	80
45	The RHOX homeobox gene cluster is selectively expressed in human oocytes and male germ cells. Human Reproduction, 2013, 28, 1635-1646.	0.4	31
46	Effects of the FSH-Î ² -Subunit Promoter Polymorphism â^'211G→T on the Hypothalamic-Pituitary-Ovarian Axis in Normally Cycling Women Indicate a Gender-Specific Regulation of Gonadotropin Secretion. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E82-E86.	1.8	36
47	Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor. Human Reproduction Update, 2013, 19, 583-602.	5.2	88
48	Broad <scp>DNA</scp> methylation changes of spermatogenesis, inflammation and immune responseâ€related genes in a subgroup of sperm samples for assisted reproduction. Andrology, 2013, 1, 822-829.	1.9	34
49	A combined approach facilitates the reliable detection of human spermatogonia in vitro. Human Reproduction, 2013, 28, 3012-3025.	0.4	71
50	Impact of DNA methylation on the regulation of the luteinizing hormone/choriogonadotropin receptor expression. Experimental and Clinical Endocrinology and Diabetes, 2013, 121, .	0.6	3
51	The Origin of the RB1 Imprint. PLoS ONE, 2013, 8, e81502.	1.1	21
52	Influence of variants in the FSHB and FSHR gene on reproductive parameters in males and females. Experimental and Clinical Endocrinology and Diabetes, 2013, 121, .	0.6	0
53	Aberrant transcription of the LHCGR gene caused by a mutation in exon 6A leads to Leydig cell hypoplasia type II. Experimental and Clinical Endocrinology and Diabetes, 2013, 121, .	0.6	18
54	Different intra- and intermolecular activation mechanisms at the human lutropin receptor: Lutropin induces only cis- and choriogonadotropin also trans-activation. Experimental and Clinical Endocrinology and Diabetes, 2013, 121, .	0.6	0

#	Article	IF	CITATIONS
55	The pluripotency factor LIN28 in monkey and human testes: a marker for spermatogonial stem cells?. Molecular Human Reproduction, 2012, 18, 477-488.	1.3	64
56	Developmental Expression of the Pluripotency Factor Sal-Like Protein 4 in the Monkey, Human and Mouse Testis: Restriction to Premeiotic Germ Cells. Cells Tissues Organs, 2012, 196, 206-220.	1.3	73
57	Role of the CAG Repeat Polymorphism of the Androgen Receptor Gene in Polycystic Ovary Syndrome (PCOS). Experimental and Clinical Endocrinology and Diabetes, 2012, 120, 73-79.	0.6	46
58	Misleading and reliable markers to differentiate between primate testis-derived multipotent stromal cells and spermatogonia in culture. Human Reproduction, 2012, 27, 1754-1767.	0.4	49
59	Routine cryopreservation of spermatozoa is safe — Evidence from the DNA methylation pattern of nine spermatozoa genes. Journal of Assisted Reproduction and Genetics, 2012, 29, 943-950.	1.2	44
60	Combined Effects of the Variants <i>FSHB</i> â^²211G>T and <i>FSHR</i> 2039A>G on Male Reproductive Parameters. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 3639-3647.	1.8	116
61	Comparative Marker Analysis after Isolation and Culture of Testicular Cells from the Immature Marmoset. Cells Tissues Organs, 2012, 196, 543-554.	1.3	38
62	Depressive Symptoms in Men Aged 50 Years and Older and Their Relationship to Genetic Androgen Receptor Polymorphism and Sex Hormone Levels in Three Different Samples. American Journal of Geriatric Psychiatry, 2011, 19, 274-283.	0.6	34
63	A novel two-promoter-one-gene system of the chorionic gonadotropin β gene enables tissue-specific expression. Journal of Molecular Endocrinology, 2011, 47, 285-298.	1.1	6
64	Effects of the FSH receptor gene polymorphism p.N680S on cAMP and steroid production in cultured primary human granulosa cells. Reproductive BioMedicine Online, 2011, 23, 196-203.	1.1	70
65	Variation in CAG and GGN repeat lengths and CAG/GGN haplotype in androgen receptor gene polymorphism and prostate carcinoma in Nigerians. British Journal of Biomedical Science, 2011, 68, 138-142.	1.2	19
66	Molecular cloning and functional characterization of endogenous recombinant common marmoset monkey (<i>Callithrix jacchus</i>) follicleâ€stimulating hormone. Journal of Medical Primatology, 2011, 40, 111-119.	0.3	9
67	Expression of selected genes escaping from X inactivation in the 41, XX ^Y * mouse model for Klinefelter's syndrome. Acta Paediatrica, International Journal of Paediatrics, 2011, 100, 885-891.	0.7	36
68	Sex Hormone Levels, Genetic Androgen Receptor Polymorphism, and Anxiety in ≥50-Year-Old Males. Journal of Sexual Medicine, 2011, 8, 3452-3464.	0.3	25
69	Evaluation of CAG repeat length of androgen receptor expressing cells in human testes showing different pictures of spermatogenic impairment. Histochemistry and Cell Biology, 2011, 136, 689-697.	0.8	18
70	Methylation Status of Imprinted Genes and Repetitive Elements in Sperm DNA from Infertile Males. Sexual Development, 2011, 5, 60-69.	1.1	125
71	Leydig Cell Hypoplasia due to Inactivating Luteinizing Hormone/Chorionic Gonadotropin Receptor Gene Mutation Presenting as a 46,XY DSD. Advances in Experimental Medicine and Biology, 2011, 707, 147-148.	0.8	9
72	Testosterone Replacement Effectively Inhibits the Development of Experimental Autoimmune Orchitis in Rats: Evidence for a Direct Role of Testosterone on Regulatory T Cell Expansion. Journal of Immunology, 2011, 186, 5162-5172.	0.4	163

#	Article	IF	CITATIONS
73	Reduced expression of DNMT3B in the germ cells of patients with bilateral spermatogenic arrest does not lead to changes in the global methylation status. Molecular Human Reproduction, 2011, 17, 545-549.	1.3	17
74	A One-Step Real-Time Multiplex PCR for Screening Y-Chromosomal Microdeletions without Downstream Amplicon Size Analysis. PLoS ONE, 2011, 6, e23174.	1.1	11
75	Idiopathic male infertility is strongly associated with aberrant methylation of <i>MEST</i> and <i>IGF2/H19 ICR1</i> . Journal of Developmental and Physical Disabilities, 2010, 33, 642-649.	3.6	185
76	Aging males' symptoms in relation to the genetically determined androgen receptor CAG polymorphism, sex hormone levels and sample membership. Psychoneuroendocrinology, 2010, 35, 578-587.	1.3	32
77	A common haplotype of <i>protamine</i> 1 and 2 genes is associated with higher sperm counts. Journal of Developmental and Physical Disabilities, 2010, 33, e240-8.	3.6	37
78	An unbalanced translocation unmasks a recessive mutation in the follicle-stimulating hormone receptor (FSHR) gene and causes FSH resistance. European Journal of Human Genetics, 2010, 18, 656-661.	1.4	42
79	Severe XIST hypomethylation clearly distinguishes (SRY+) 46,XX-maleness from Klinefelter syndrome. European Journal of Endocrinology, 2010, 162, 169-175.	1.9	22
80	Germ cell dynamics in the testis of the postnatal common marmoset monkey (Callithrix jacchus). Reproduction, 2010, 140, 733-742.	1.1	28
81	Novel genetic aspects of Klinefelter's syndrome. Molecular Human Reproduction, 2010, 16, 386-395.	1.3	136
82	Male 41, XXY* Mice as a Model for Klinefelter Syndrome: Hyperactivation of Leydig Cells. Endocrinology, 2010, 151, 2898-2910.	1.4	47
83	No Correlation between Androgen Receptor CAG and GGN Repeat Length and the Degree of Genital Virilization in Females with 21-Hydroxylase Deficiency. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 2443-2450.	1.8	21
84	Primate FSH-receptor promoter nucleotide sequence heterogeneity affects FSH-receptor transcription. Molecular and Cellular Endocrinology, 2010, 317, 90-98.	1.6	9
85	Maternal Smoking and Developmental Changes in Luteinizing Hormone (LH) and the LH Receptor in the Fetal Testis. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4688-4695.	1.8	40
86	Depressive Symptoms in Ageing Men and their Relation to the Androgen Receptor Gene CAG Repeat Polymorphism and Testosterone Levels. Journal of Men's Health, 2009, 6, 242-242.	0.1	0
87	Aging males' symptoms in relation to the genetically determined androgen receptor CAG polymorphism, sex hormone levels and sample membership. Journal of Men's Health, 2009, 6, 243-243.	0.1	0
88	Role of syndecan-3 polymorphisms in obesity and female hyperandrogenism. Journal of Molecular Medicine, 2009, 87, 1241-1250.	1.7	12
89	Isolation and Characterization of Pluripotent Human Spermatogonial Stem Cell-Derived Cells. Stem Cells, 2009, 27, 138-149.	1.4	276

90 Human Embryonic Stem Cells and Germ Cell Development. , 2009, , 55-66.

0

#	Article	IF	CITATIONS
91	Androgen receptor gene CAG and GGN polymorphisms in infertile Nigerian men. Journal of Endocrinological Investigation, 2009, 32, 797-804.	1.8	23
92	A novel sequence variation in the transactivation regulating domain of the human androgen receptor. Fertility and Sterility, 2009, 92, 390.e9-390.e11.	0.5	10
93	Impaired recognition memory in male mice with a supernumerary X chromosome. Physiology and Behavior, 2009, 96, 23-29.	1.0	44
94	Body Fat Content and Testosterone Pharmacokinetics Determine Gonadotropin Suppression After Intramuscular Injections of Testosterone Preparations in Normal Men. Journal of Andrology, 2009, 30, 602-613.	2.0	16
95	IGF2/H19 hypomethylation in Silver–Russell syndrome and isolated hemihypoplasia. European Journal of Human Genetics, 2008, 16, 328-334.	1.4	41
96	Coculture of Spermatogonia With Somatic Cells in a Novel Threeâ€Dimensional Softâ€Agar ulture‧ystem. Journal of Andrology, 2008, 29, 312-329.	2.0	135
97	Clinical consequences of microdeletions of the Y chromosome: the extended Münster experience. Reproductive BioMedicine Online, 2008, 16, 289-303.	1.1	167
98	New insights into the evolution of chorionic gonadotrophin. Molecular and Cellular Endocrinology, 2008, 291, 11-19.	1.6	36
99	Follicle-stimulating hormone receptor and DAZL gene polymorphisms do not affect the age of menopause. Fertility and Sterility, 2008, 90, 2264-2268.	0.5	32
100	Phenotypic variation within European carriers of the Y-chromosomal gr/gr deletion is independent of Y-chromosomal background. Journal of Medical Genetics, 2008, 46, 21-31.	1.5	65
101	Mutations in a Novel, Cryptic Exon of the Luteinizing Hormone/Chorionic Gonadotropin Receptor Gene Cause Male Pseudohermaphroditism. PLoS Medicine, 2008, 5, e88.	3.9	52
102	Polymorphisms of the luteinizing hormone/chorionic gonadotropin receptor gene: association with maldescended testes and male infertility. Pharmacogenetics and Genomics, 2008, 18, 193-200.	0.7	53
103	Chorionic Gonadotropin β-Subunit Gene Expression in the Marmoset Pituitary Is Controlled by Steroidogenic Factor 1, Early Growth Response Protein 1, and Pituitary Homeobox Factor 1. Endocrinology, 2007, 148, 6062-6072.	1.4	11
104	Genomic Checkpoints for Exon 10 Usage in the Luteinizing Hormone Receptor Type 1 and Type 2. Molecular Endocrinology, 2007, 21, 1984-1996.	3.7	18
105	Clinical, Endocrinological, and Epigenetic Features of the 46,XX Male Syndrome, Compared with 47,XXY Klinefelter Patients. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 3458-3465.	1.8	208
106	Association of three isoforms of the meiotic BOULE gene with spermatogenic failure in infertile men. Molecular Human Reproduction, 2007, 13, 85-93.	1.3	36
107	LHR splicing variants and gene expression in the marmoset monkey. Molecular and Cellular Endocrinology, 2007, 279, 9-15.	1.6	7
108	Mutation analysis of the X-chromosome linked, testis-specific TAF7L gene in spermatogenic failure. Andrologia, 2007, 39, 190-195.	1.0	41

#	Article	IF	CITATIONS
109	Analysis of the genetic interactions between Cyclin A1, Atm and p53 during spermatogenesis. Asian Journal of Andrology, 2007, 9, 739-750.	0.8	9
110	Genetic causes of hypogonadotropic hypogonadism. Experimental and Clinical Endocrinology and Diabetes, 2007, 115, .	0.6	0
111	The distribution of FSH receptor isoforms is related to basal FSH levels in subfertile women with normal menstrual cycles. Human Reproduction, 2006, 21, 443-446.	0.4	54
112	Y-chromosomal microdeletions and partial deletions of the Azoospermia Factor c (AZFc) region in normozoospermic, severe oligozoospermic and azoospermic men in Sri Lanka. Asian Journal of Andrology, 2006, 8, 39-44.	0.8	47
113	Evolutionary comparison of the reproductive genes, DAZL and BOULE, in primates with and without DAZ. Development Genes and Evolution, 2006, 216, 158-168.	0.4	21
114	The androgen receptor CAG repeat modifies the impact of testosterone on insulin resistance in women with polycystic ovary syndrome. European Journal of Endocrinology, 2006, 155, 127-130.	1.9	58
115	Significance of a common single nucleotide polymorphism in exon 10 of the follicle-stimulating hormone (FSH) receptor gene for the ovarian response to FSH: a pharmacogenetic approach to controlled ovarian hyperstimulation. Pharmacogenetics and Genomics, 2005, 15, 451-456.	0.7	159
116	The androgen receptor CAG repeat polymorphism. Andrologia, 2005, 37, 216-216.	1.0	13
117	Role of sequence variations of the GnRH receptor and G protein-coupled receptor 54 gene in male idiopathic hypogonadotropic hypogonadism. European Journal of Endocrinology, 2005, 153, 845-852.	1.9	107
118	A Common Single Nucleotide Polymorphism in Exon 10 of the Human Follicle Stimulating Hormone Receptor Is a Major Determinant of Length and Hormonal Dynamics of the Menstrual Cycle. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 4866-4872.	1.8	135
119	Partial deletions in the AZFc region of the Y chromosome occur in men with impaired as well as normal spermatogenesis. Human Reproduction, 2005, 20, 191-197.	0.4	134
120	Single-nucleotide polymorphisms in the promoter region influence the expression of the human follicle-stimulating hormone receptor. Fertility and Sterility, 2005, 84, 446-453.	0.5	89
121	Genetic complexity of FSH receptor function. Trends in Endocrinology and Metabolism, 2005, 16, 368-373.	3.1	118
122	Follicle-Stimulating Hormone Receptor Gene Haplotype Distribution in Normozoospermic and Azoospermic Men. Journal of Andrology, 2005, 26, 494-499.	2.0	69
123	Single nucleotide polymorphisms of follicle-stimulating hormone receptor promoter and their impacts to the promoter activities. Medical Journal of Indonesia, 2004, 13, 205.	0.2	Ο
124	Case Report: Natural transmission of an AZFc Y-chromosomal microdeletion from father to his sons. Human Reproduction, 2004, 19, 886-888.	0.4	77
125	Association of Meiotic Arrest with Lack ofBOULEProtein Expression in Infertile Men. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 1926-1933.	1.8	74
126	The Carboxyterminal Peptide of Chorionic Gonadotropin Facilitates Activation of the Marmoset LH Receptor. Experimental and Clinical Endocrinology and Diabetes, 2004, 112, 574-579.	0.6	20

#	Article	IF	CITATIONS
127	Long-Term Follow-Up of Spontaneous Development in a Boy with Familial Male Precocious Puberty. Hormone Research in Paediatrics, 2004, 62, 177-181.	0.8	16
128	Chorionic gonadotrophin beta subunit mRNA but not luteinising hormone beta subunit mRNA is expressed in the pituitary of the common marmoset (Callithrix jacchus). Journal of Molecular Endocrinology, 2004, 32, 115-128.	1.1	73
129	Identification of Interaction Partners and Substrates of the Cyclin A1-CDK2 Complex. Journal of Biological Chemistry, 2004, 279, 33727-33741.	1.6	59
130	No association of the A260G and A386G DAZL single nucleotide polymorphisms with male infertility in a Caucasian population. Human Reproduction, 2004, 19, 2771-2776.	0.4	36
131	Absence of the genetic variant Val79Met in human chorionic gonadotropin-beta gene 5 in five European populations. Molecular Human Reproduction, 2004, 10, 763-766.	1.3	9
132	Gene expression profiling of mouse Sertoli cell lines. Cell and Tissue Research, 2004, 315, 249-257.	1.5	13
133	X-Chromosome Inactivation Patterns and Androgen Receptor Functionality Influence Phenotype and Social Characteristics as Well as Pharmacogenetics of Testosterone Therapy in Klinefelter Patients. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 6208-6217.	1.8	200
134	A polymorphism in the androgen-receptor gene (CAC-repeats) is associated with polycystic ovary syndrome (PCOS). Fertility and Sterility, 2004, 82, S4-S5.	0.5	3
135	The CAG repeat polymorphism in the androgen receptor gene modulates body fat mass and serum concentrations of leptin and insulin in men. Diabetologia, 2003, 46, 31-39.	2.9	160
136	CAG repeat length in the androgen receptor gene affects the risk of male infertility. Journal of Developmental and Physical Disabilities, 2003, 26, 255-261.	3.6	46
137	Follicle-stimulating hormone receptor polymorphisms in women with normogonadotropic anovulatory infertility. Fertility and Sterility, 2003, 80, 986-992.	0.5	103
138	A New Subclass of the Luteinizing Hormone/Chorionic Gonadotropin Receptor Lacking Exon 10 Messenger RNA in the New World Monkey (Platyrrhini) Lineage1. Biology of Reproduction, 2003, 69, 75-80.	1.2	72
139	Absence of Exon 10 of the Human Luteinizing Hormone (LH) Receptor Impairs LH, But Not Human Chorionic Gonadotropin Action. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 2242-2249.	1.8	102
140	Prostate Volume and Growth in Testosterone-Substituted Hypogonadal Men Are Dependent on the CAG Repeat Polymorphism of the Androgen Receptor Gene: A Longitudinal Pharmacogenetic Study. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 2049-2054.	1.8	109
141	Isoforms and single nucleotide polymorphisms of the FSH receptor gene: implications for human reproduction. Human Reproduction Update, 2002, 8, 413-421.	5.2	183
142	Homozygous mutation within the conserved Ala-Phe-Asn-Glu-Thr motif of exon 7 of the LH receptor causes male pseudohermaphroditism. European Journal of Endocrinology, 2002, 147, 597-608.	1.9	59
143	Manifestation of Y-chromosomal deletions in the human testis: a morphometrical and immunohistochemical evaluation. Human Reproduction, 2002, 17, 2258-2266.	0.4	51
144	A Novel Promoter Is Involved in the Expression of Estrogen Receptor α in Human Testis and Epididymis. Endocrinology, 2002, 143, 3397-3404.	1.4	30

#	Article	IF	CITATIONS
145	An Activated Human Follicle-Stimulating Hormone (FSH) Receptor Stimulates FSH-Like Activity in Gonadotropin-Deficient Transgenic Mice. Molecular Endocrinology, 2002, 16, 2582-2591.	3.7	53
146	Identification and characterization of the cynomolgus monkey chromodomain gene cynCDY, an orthologue of the human CDY gene family. Molecular Human Reproduction, 2002, 8, 702-709.	1.3	12
147	Association of basal follicle stimulating hormone (FSH) levels with FSH receptor variants in subfertile women with normal menstrual cycle: implications for ovarian sensitivity to FSH. Fertility and Sterility, 2002, 78, S107-S108.	0.5	1
148	TestisBank: an internet-based gene sequence database of the testis. Journal of Developmental and Physical Disabilities, 2002, 25, 175-179.	3.6	1
149	CAG repeat length in the androgen receptor gene and gonadotrophin suppression influence the effectiveness of hormonal male contraception. Clinical Endocrinology, 2002, 57, 647-655.	1.2	60
150	Distribution and function of FSH receptor genetic variants in normal men. Andrologia, 2002, 34, 172-176.	1.0	38
151	Natural transmission of a partial AZFb deletion of the Y chromosome over three generations: Case report. Human Reproduction, 2002, 17, 2267-2271.	0.4	36
152	Follicle-stimulating-hormone receptor and twinning. Lancet, The, 2001, 357, 230.	6.3	15
153	Mutationen der Gonadotropine und Gonadotropinrezeptoren. Reproduktionsmedizin, 2001, 17, 227-234.	0.1	1
154	The relationship between Y chromosome DNA haplotypes and Y chromosome deletions leading to male infertility. Human Genetics, 2001, 108, 55-58.	1.8	36
155	The CAG repeat polymorphism in the androgen receptor gene affects bone density and bone metabolism in healthy males. Clinical Endocrinology, 2001, 55, 649-657.	1.2	95
156	Prevalence of Y chromosome microdeletions in infertile men who consulted a tertiary care medical centre: the Münster experience. Andrologia, 2001, 33, 27-33.	1.0	51
157	The CAG Repeat Polymorphism in the AR Gene Affects High Density Lipoprotein Cholesterol and Arterial Vasoreactivity. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 4867-4873.	1.8	116
158	Inverse Correlation between Sperm Concentration and Number of Androgen Receptor CAG Repeats in Normal Men1. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 2585-2590.	1.8	99
159	Physiology of Testicular Function. , 2001, , 23-61.		6
160	Deletion of azoospermia factor a (AZFa) region of human Y chromosome caused by recombination between HERV15 proviruses. Human Molecular Genetics, 2000, 9, 2291-2296.	1.4	227
161	Dazl protein expression in adult rat testis is up-regulated at meiosis and not hormonally regulated. Journal of Developmental and Physical Disabilities, 2000, 23, 51-56.	3.6	25
162	Male Hypogonadism Caused by Homozygous Deletion of Exon 10 of the Luteinizing Hormone (LH) Receptor: Differential Action of Human Chorionic Gonadotropin and LH. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 2281-2286.	1.8	170

#	Article	IF	CITATIONS
163	Detection of Mutations in Glycoprotein Hormone Receptors. Methods, 2000, 21, 83-97.	1.9	30
164	Ovarian Response to Follicle-Stimulating Hormone (FSH) Stimulation Depends on the FSH Receptor Genotype*. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 3365-3369.	1.8	311
165	Physiologie der Hodenfunktion. , 2000, , 27-67.		6
166	Transmission of a Y chromosomal deletion involving the deleted in azoospermia (DAZ) and chromodomain (CDY1) genes from father to son through intracytoplasmic sperm injection: Case report. Human Reproduction, 1999, 14, 2320-2322.	0.4	99
167	Mutational Analysis of the Follicle-Stimulating Hormone (FSH) Receptor in Normal and Infertile Men: Identification and Characterization of Two Discrete FSH Receptor Isoforms1. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 751-755.	1.8	160
168	The old world monkey DAZ (Deleted in AZoospermia) gene yields insights into the evolution of the DAZ gene cluster on the human Y chromosome. Human Molecular Genetics, 1999, 8, 2017-2024.	1.4	49
169	Mutation screening and isoform prevalence of the follicle stimulating hormone receptor gene in women with premature ovarian failure, resistant ovary syndrome and polycystic ovary syndrome. Clinical Endocrinology, 1999, 51, 97-99.	1.2	131
170	Role of FSH in the regulation of spermatogenesis: clinical aspects. Clinical Endocrinology, 1999, 51, 139-146.	1.2	122
171	Constitutively Active Mutations of G Protein-Coupled Receptors. Archives of Medical Research, 1999, 30, 501-509.	1.5	17
172	Cloning and expression of cynomolgus monkey (Macaca fascicularis) gonadotropins luteinizing hormone and follicle-stimulating hormone and identification of two polymorphic sites in the luteinizing hormone β subunit. Molecular and Cellular Endocrinology, 1999, 156, 73-83.	1.6	14
173	Deception by chimerism. Human Reproduction, 1999, 14, 572-572.	0.4	14
174	Molecular Pathophysiology and Clinical Manifestations of Gonadotropin Receptor Defects. Steroids, 1998, 63, 288-293.	0.8	12
175	Molecular Cloning and Expression of Rat Contraception Associated Protein 1 (CAP1), a Protein Putatively Involved in Fertilization. Biochemical and Biophysical Research Communications, 1998, 251, 545-549.	1.0	96
176	Identification of allelic variants in the follicle-stimulating hormone receptor genes of females with or without hypergonadotropic amenorrhea. Fertility and Sterility, 1998, 70, 326-331.	0.5	54
177	A Mutation in the First Transmembrane Domain of the Lutropin Receptor Causes Male Precocious Puberty. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 476-480.	1.8	62
178	Spermatogenesis-Specific Genes Deleted in Infertile Men: DAZ/DAZH Clinical Aspects and Animal Models. , 1998, , 273-294.		2
179	cynDAZLA: a cynomolgus monkey homologue of the human autosomal DAZ gene. Molecular Human Reproduction, 1997, 3, 479-483.	1.3	25
180	Expression of Mitotic Cyclin B1 is not Confined to Proliferating Cells in the Rat Testis1. Biology of Reproduction, 1997, 57, 1312-1319.	1.2	27

#	Article	IF	CITATIONS
181	The Follicle-Stimulating Hormone Receptor: Biochemistry, Molecular Biology, Physiology, and Pathophysiology*. Endocrine Reviews, 1997, 18, 739-773.	8.9	624
182	Screening for deletions of the Y chromosome involving the DAZ (Deleted in AZoospermia) gene in azoospermia and severe oligozoospermia. Fertility and Sterility, 1997, 67, 542-547.	0.5	210
183	Does the gonadotrophic axis play a role in the pathogenesis of Sertoliâ€cellâ€only syndrome?. Journal of Developmental and Physical Disabilities, 1997, 20, 29-36.	3.6	25
184	Molecular Pathophysiology of the Pituitary-Gonadal Axis. Advances in Experimental Medicine and Biology, 1997, 424, 89-97.	0.8	10
185	Physiology of Testicular Function. , 1997, , 23-57.		7
186	An activating mutation of the follicle-stimulating hormone receptor autonomously sustains spermatogenesis in a hypophysectomized man Journal of Clinical Endocrinology and Metabolism, 1996, 81, 1367-1370.	1.8	236
187	The Structure and Organization of the Human Follicle-Stimulating Hormone Receptor (FSHR) Gene. Genomics, 1996, 35, 308-311.	1.3	110
188	Functional and clinical consequences of mutations in the FSH receptor. Molecular and Cellular Endocrinology, 1996, 125, 177-182.	1.6	124
189	Monitoring the transfection efficiency of the human folliclestimulating hormone receptor cDNA in COS-7 cells: evaluation of the growth hormone transient gene expression assay system. Journal of Endocrinological Investigation, 1996, 19, 359-364.	1.8	5
190	An activating mutation of the follicle-stimulating hormone receptor autonomously sustains spermatogenesis in a hypophysectomized man. Journal of Clinical Endocrinology and Metabolism, 1996, 81, 1367-1370.	1.8	232
191	Quantification of androgen receptor and follicleâ€stimulating hormone receptor mRNA levels in human and monkey testes by a ribonucleaseâ€protection assay. Journal of Developmental and Physical Disabilities, 1995, 18, 88-96.	3.6	19
192	Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell, 1995, 82, 959-968.	13.5	901
193	Ubiquitous expression of the androgen receptor and testis-specific expression of the FSH receptor in the cynomolgus monkey (Macaca fascicularis) revealed by a ribonuclease protection assay. Journal of Steroid Biochemistry and Molecular Biology, 1995, 55, 35-41.	1.2	36
194	Localization of the human FSH receptor to chromosome 2 p21 using a genomic probe comprising exon 10. Journal of Molecular Endocrinology, 1994, 12, 265-271.	1.1	58
195	In vitro bioassay for human serum follicle-stimulating hormone (FSH) based on L cells transfected with recombinant rat FSH receptor: validation of a model system Endocrinology, 1994, 135, 2204-2213.	1.4	28
196	Characterization of the 5' flanking region of the human follicle-stimulating hormone receptor gene. Molecular and Cellular Endocrinology, 1994, 102, 93-102.	1.6	58
197	Molecular Cloning of the Testicular Follicle Stimulating Hormone Receptor of the Nonhuman Primate Macaca fascicularis and Identification of Multiple Transcripts in the Testis. Biochemical and Biophysical Research Communications, 1993, 196, 1066-1072.	1.0	47
198	Effects of antiandrogens and ethane dimethane sulphonate (EDS) on gene expression, free subunits, bioactivity and secretion of pituitary gonadotrophins in male rats. Molecular and Cellular Endocrinology, 1993, 91, 119-125.	1.6	27

#	Article	IF	CITATIONS
199	FSH receptor mRNA is expressed stage-dependently during rat spermatogenesis. Molecular and Cellular Endocrinology, 1992, 84, R45-R49.	1.6	53
200	Molecular cloning of a truncated isoform of the human follicle stimulating hormone receptor. Biochemical and Biophysical Research Communications, 1992, 188, 1077-1083.	1.0	79
201	Cloning and sequence analysis of cDNA for precursor of a crustacean hyperglycemic hormone. FEBS Letters, 1989, 257, 31-34.	1.3	95