
Andrea Vasconsuelo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6122725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Testosterone induces up-regulation of mitochondrial gene expression in murine C2C12 skeletal muscle cells accompanied by an increase of nuclear respiratory factor-1 and its downstream effectors. Molecular and Cellular Endocrinology, 2020, 500, 110631.	3.2	26
2	Oxidative Stress in Muscle Diseases: Current and Future Therapy 2019. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-4.	4.0	12
3	Adverse Effects in Skeletal Muscle Following the Medicinal Use of <i>Nicotiana glauca</i> . Biological and Pharmaceutical Bulletin, 2019, 42, 671-679.	1.4	3
4	Oxidative Stress in Muscle Diseases: Current and Future Therapy. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-4.	4.0	24
5	17βâ€Estradiol Protects Skeletal Myoblasts From Apoptosis Through p53, Bclâ€2, and FoxO Families. Journal of Cellular Biochemistry, 2017, 118, 104-115.	2.6	29
6	Testosterone modulates FoxO3a and p53-related genes to protect C2C12 skeletal muscle cells against apoptosis. Steroids, 2017, 124, 35-45.	1.8	15
7	Effects of Photobiomodulation Therapy on Oxidative Stress in Muscle Injury Animal Models: A Systematic Review. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-8.	4.0	32
8	Involvement of AR, ER, PKCΔ, JNK and MnSOD in 17ß-estradiol and testosterone antiapoptotic effects in C2C12 skeletal muscle cells. Bone, 2015, 71, 259-260.	2.9	0
9	17βâ€Estradiol Abrogates Apoptosis Inhibiting PKCδ, JNK, and p66Shc Activation in C2C12 Cells. Journal of Cellular Biochemistry, 2015, 116, 1454-1465.	2.6	11
10	17β-Estradiol and testosterone in sarcopenia: Role of satellite cells. Ageing Research Reviews, 2015, 24, 166-177.	10.9	48
11	Actions of 17β-estradiol and testosterone in the mitochondria and their implications in aging. Ageing Research Reviews, 2013, 12, 907-917.	10.9	46
12	Estradiol exerts antiapoptotic effects in skeletal myoblasts via mitochondrial PTP and MnSOD. Journal of Endocrinology, 2013, 216, 331-341.	2.6	21
13	17�-Estradiol Protects Mitochondrial Functions through Extracellular-Signal-Regulated Kinase in C2C12 Muscle Cells. Cellular Physiology and Biochemistry, 2013, 32, 1011-1023.	1.6	21
14	High passage numbers induce resistance to apoptosis in C2C12 muscle cells. Biocell, 2013, 37, 1-9.	0.7	5
15	Role of 17β-estradiol and testosterone in apoptosis. Steroids, 2011, 76, 1223-1231.	1.8	69
16	Participation of HSP27 in the antiapoptotic action of 17β-estradiol in skeletal muscle cells. Cell Stress and Chaperones, 2010, 15, 183-192.	2.9	37
17	Extracellular-regulated kinase and p38 mitogen-activated protein kinases are involved in the antiapoptotic action of 17β-estradiol in skeletal muscle cells. Journal of Endocrinology, 2010, 206, 235-246.	2.6	37
18	1α ,25(OH)2-Vitamin D3 and 17β-Estradiol: Two Steroid Partners Acting in Skeletal Muscle. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2009, 9, 159-168.	0.5	0

ANDREA VASCONSUELO

#	Article	IF	CITATIONS
19	Expression and subcellular distribution of native estrogen receptor β in murine C2C12 cells and skeletal muscle tissue. Steroids, 2009, 74, 489-497.	1.8	43
20	17β-Estradiol signaling in skeletal muscle cells and its relationship to apoptosis. Steroids, 2008, 73, 859-863.	1.8	57
21	17β-Estradiol abrogates apoptosis in murine skeletal muscle cells through estrogen receptors: role of the phosphatidylinositol 3-kinase/Akt pathway. Journal of Endocrinology, 2008, 196, 385-397.	2.6	96
22	Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Science, 2007, 172, 861-875.	3.6	299
23	Involvement of G-proteins in chitosan-induced Anthraquinone synthesis in Rubia tinctorum. Physiologia Plantarum, 2006, 128, 29-37.	5.2	13
24	Intracellular calcium mobilization: A key step for chitosan-induced anthraquinone production in Rubia tinctorum L Plant Science, 2005, 169, 712-720.	3.6	28
25	Signal transduction events mediating chitosan stimulation of anthraquinone synthesis in Rubia tinctorum. Plant Science, 2004, 166, 405-413.	3.6	36
26	Involvement of the PLC/PKC pathway in Chitosan-induced anthraquinone production by Rubia tinctorum L. cell cultures. Plant Science, 2003, 165, 429-436.	3.6	75
27	The neuronal nicotinic acetylcholine receptor in some hereditary epilepsies. Neurochemical Research, 2000, 25, 583-590.	3.3	11
28	Non-polar extracts of Nicotiana glauca (Solanaceae) induce apoptosis in human rhabdomyosarcoma cells. Rodriguesia, 0, 71, .	0.9	3