Ursula M Schmidt-Erfurth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6122714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intravitreal Aflibercept (VEGF Trap-Eye) in Wet Age-related Macular Degeneration. Ophthalmology, 2012, 119, 2537-2548.	2.5	1,947
2	Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery. Lecture Notes in Computer Science, 2017, , 146-157.	1.0	1,118
3	f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Medical Image Analysis, 2019, 54, 30-44.	7.0	716
4	Intravitreal Aflibercept Injection for Neovascular Age-related Macular Degeneration. Ophthalmology, 2014, 121, 193-201.	2.5	693
5	Intravitreal Aflibercept for Diabetic Macular Edema. Ophthalmology, 2014, 121, 2247-2254.	2.5	668
6	HAWK and HARRIER: Phase 3, Multicenter, Randomized, Double-Masked Trials of Brolucizumab for Neovascular Age-Related Macular Degeneration. Ophthalmology, 2020, 127, 72-84.	2.5	551
7	Artificial intelligence in retina. Progress in Retinal and Eye Research, 2018, 67, 1-29.	7.3	469
8	Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA). British Journal of Ophthalmology, 2014, 98, 1144-1167.	2.1	463
9	Guidelines for the Management of Diabetic Macular Edema by the European Society of Retina Specialists (EURETINA). Ophthalmologica, 2017, 237, 185-222.	1.0	456
10	Intravitreal Aflibercept for Diabetic MacularÂEdema. Ophthalmology, 2015, 122, 2044-2052.	2.5	451
11	Consensus Nomenclature for Reporting Neovascular Age-Related Macular Degeneration Data. Ophthalmology, 2020, 127, 616-636.	2.5	417
12	Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Ophthalmology, 2018, 125, 549-558.	2.5	384
13	Efficacy and Safety of Monthly versus Quarterly Ranibizumab Treatment in Neovascular Age-related Macular Degeneration: The EXCITE Study. Ophthalmology, 2011, 118, 831-839.	2.5	353
14	Three-Year Outcomes of Individualized Ranibizumab Treatment in Patients with Diabetic Macular Edema. Ophthalmology, 2014, 121, 1045-1053.	2.5	347
15	Intravitreal Aflibercept for Diabetic Macular Edema. Ophthalmology, 2016, 123, 2376-2385.	2.5	329
16	Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. Optics Express, 2008, 16, 16410.	1.7	289
17	A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Progress in Retinal and Eye Research, 2016, 50, 1-24.	7.3	284
18	Three-Dimensional Ultrahigh-Resolution Optical Coherence Tomography of Macular Diseases. Investigative Ophthalmology and Visual Science, 2005, 46, 3393-3402.	3.3	257

#	Article	IF	CITATIONS
19	Intravitreal Aflibercept Injection for MacularÂEdema Resulting from Central Retinal VeinÂOcclusion. Ophthalmology, 2014, 121, 202-208.	2.5	243
20	Polarization sensitive optical coherence tomography in the human eye. Progress in Retinal and Eye Research, 2011, 30, 431-451.	7.3	228
21	HAWK and HARRIER. Ophthalmology, 2021, 128, 89-99.	2.5	215
22	Intraocular Concentrations of Growth Factors and Cytokines in Retinal Vein Occlusion and the Effect of Therapy with Bevacizumab. , 2009, 50, 1025.		202
23	2018 Update on Intravitreal Injections: Euretina Expert Consensus Recommendations. Ophthalmologica, 2018, 239, 181-193.	1.0	195
24	Human Macula Investigated In Vivo with Polarization-Sensitive Optical Coherence Tomography. , 2006, 47, 5487.		181
25	Pigment Epithelial Detachment Followed byÂRetinal Cystoid Degeneration Leads toÂVision Loss in Treatment of Neovascular Age-Related Macular Degeneration. Ophthalmology, 2015, 122, 822-832.	2.5	170
26	THE PATHOPHYSIOLOGY OF GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION AND THE COMPLEMENT PATHWAY AS A THERAPEUTIC TARGET. Retina, 2017, 37, 819-835.	1.0	157
27	Guidelines for the Management of Retinal Vein Occlusion by the European Society of Retina Specialists (EURETINA). Ophthalmologica, 2019, 242, 123-162.	1.0	153
28	Morphologic Parameters Relevant for Visual Outcome During Anti-Angiogenic Therapy of Neovascular Age-Related Macular Degeneration. Ophthalmology, 2014, 121, 1237-1245.	2.5	146
29	Prediction of Individual Disease Conversion in Early AMD Using Artificial Intelligence. , 2018, 59, 3199.		144
30	Machine Learning to Analyze the Prognostic Value of Current Imaging Biomarkers in Neovascular Age-Related Macular Degeneration. Ophthalmology Retina, 2018, 2, 24-30.	1.2	143
31	Intravitreal Aflibercept for Macular Edema Secondary to Central Retinal Vein Occlusion: 18-Month Results of the Phase 3 GALILEO Study. American Journal of Ophthalmology, 2014, 158, 1032-1038.e2.	1.7	142
32	Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization. Biomedical Optics Express, 2012, 3, 1670.	1.5	134
33	Prediction of Anti-VEGF Treatment Requirements in Neovascular AMD Using a Machine Learning Approach. , 2017, 58, 3240.		128
34	Morphology and Visual Acuity in Aflibercept and Ranibizumab Therapy for Neovascular Age-Related Macular Degeneration in the VIEW Trials. Ophthalmology, 2016, 123, 1521-1529.	2.5	124
35	A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration. Eye, 2017, 31, 26-44.	1.1	113
36	Characteristics of severe intraocular inflammation following intravitreal injection of bevacizumab (Avastin). British Journal of Ophthalmology, 2009, 93, 457-462.	2.1	111

#	Article	IF	CITATIONS
37	A Systematic Comparison of Spectral-Domain Optical Coherence Tomography and Fundus Autofluorescence in Patients with Geographic Atrophy. Ophthalmology, 2011, 118, 1844-1851.	2.5	107
38	Drusen volume development over time and its relevance to the course of age-related macular degeneration. British Journal of Ophthalmology, 2017, 101, 198-203.	2.1	105
39	Characterization of Drusen and Hyperreflective Foci as Biomarkers for Disease Progression in Age-Related Macular Degeneration Using Artificial Intelligence in Optical Coherence Tomography. JAMA Ophthalmology, 2020, 138, 740.	1.4	99
40	Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2010, 15, 061704.	1.4	98
41	Predictive Value of Retinal Morphology forÂVisual Acuity Outcomes of Different Ranibizumab Treatment Regimens for Neovascular AMD. Ophthalmology, 2016, 123, 60-69.	2.5	97
42	Retinal optical coherence tomography: past, present and future perspectives. British Journal of Ophthalmology, 2011, 95, 171-177.	2.1	95
43	Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo. Biomedical Optics Express, 2014, 5, 439.	1.5	95
44	Application of Automated Quantification of Fluid Volumes to Anti–VEGF Therapy of Neovascular Age-Related Macular Degeneration. Ophthalmology, 2020, 127, 1211-1219.	2.5	89
45	Exploiting Epistemic Uncertainty of Anatomy Segmentation for Anomaly Detection in Retinal OCT. IEEE Transactions on Medical Imaging, 2020, 39, 87-98.	5.4	88
46	Machine Learning of the Progression of Intermediate Age-Related Macular Degeneration Based on OCT Imaging. , 2017, 58, BIO141.		87
47	Joint retinal layer and fluid segmentation in OCT scans of eyes with severe macular edema using unsupervised representation and auto-context. Biomedical Optics Express, 2017, 8, 1874.	1.5	82
48	Correlation of 3-Dimensionally Quantified Intraretinal and Subretinal Fluid With Visual Acuity in Neovascular Age-Related Macular Degeneration. JAMA Ophthalmology, 2016, 134, 182.	1.4	80
49	Management of neovascular age-related macular degeneration. Progress in Retinal and Eye Research, 2007, 26, 437-451.	7.3	79
50	Proteomic analysis of human cataract aqueous humour: Comparison of one-dimensional gel LCMS with two-dimensional LCMS of unlabelled and iTRAQ®-labelled specimens. Journal of Proteomics, 2011, 74, 151-166.	1.2	79
51	Time Course and Morphology of Vascular Effects Associated with Photodynamic Therapy. Ophthalmology, 2005, 112, 2061-2069.	2.5	76
52	Influence of the Vitreomacular Interface onÂOutcomes of Ranibizumab Therapy inÂNeovascular Age-related Macular Degeneration. Ophthalmology, 2013, 120, 2620-2629.	2.5	74
53	Response of Retinal Vessels and Retrobulbar Hemodynamics to Intravitreal Anti-VEGF Treatment in Eyes with Branch Retinal Vein Occlusion. , 2011, 52, 3046.		73
54	Identification and clinical role of choroidal neovascularization characteristics based on optical coherence tomography angiography. Acta Ophthalmologica, 2017, 95, 414-420.	0.6	71

#	Article	IF	CITATIONS
55	Three-Dimensional Automated Choroidal Volume Assessment on Standard Spectral-Domain Optical Coherence Tomography and Correlation With the Level ofÂDiabetic Macular Edema. American Journal of Ophthalmology, 2014, 158, 1039-1048.e1.	1.7	70
56	Progression of Retinal Pigment Epithelial Atrophy in Antiangiogenic Therapy of Neovascular Age-Related Macular Degeneration. American Journal of Ophthalmology, 2015, 159, 1100-1114.e1.	1.7	70
57	An optical coherence tomography-based grading of diabetic maculopathy proposed by an international expert panel: The European School for Advanced Studies in Ophthalmology classification. European Journal of Ophthalmology, 2020, 30, 8-18.	0.7	70
58	Intraretinal cysts are the most relevant prognostic biomarker in neovascular age-related macular degeneration independent of the therapeutic strategy. British Journal of Ophthalmology, 2014, 98, 1629-1635.	2.1	67
59	Unsupervised Identification of Disease Marker Candidates in Retinal OCT Imaging Data. IEEE Transactions on Medical Imaging, 2019, 38, 1037-1047.	5.4	67
60	Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics. Biomedical Optics Express, 2017, 8, 207.	1.5	64
61	Predicting Semantic Descriptions from Medical Images with Convolutional Neural Networks. Lecture Notes in Computer Science, 2015, 24, 437-448.	1.0	64
62	Inter-expert and Intra-expert Agreement on the Diagnosis and Treatment of Retinopathy of Prematurity. American Journal of Ophthalmology, 2015, 160, 553-560.e3.	1.7	60
63	Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography. Eye, 2015, 29, 409-415.	1.1	54
64	Randomized Trial to Evaluate Tandospirone in Geographic Atrophy Secondary to Age-Related Macular Degeneration: The GATE Study. American Journal of Ophthalmology, 2015, 160, 1226-1234.	1.7	53
65	Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy. Experimental Eye Research, 2018, 166, 131-139.	1.2	51
66	Quantification of Fluid Resolution and Visual Acuity Gain in Patients With Diabetic Macular Edema Using Deep Learning. JAMA Ophthalmology, 2020, 138, 945.	1.4	49
67	Clinical safety of ranibizumab in age-related macular degeneration. Expert Opinion on Drug Safety, 2010, 9, 149-165.	1.0	48
68	Intravitreal bevacizumab (Avastin) versus triamcinolone (Volon A) for treatment of diabetic macular edema: one-year results. Eye, 2014, 28, 9-16.	1.1	48
69	Role of Deep Learning–Quantified Hyperreflective Foci for the Prediction of Geographic Atrophy Progression. American Journal of Ophthalmology, 2020, 216, 257-270.	1.7	48
70	ldentification of Drusen Characteristics in Age-Related Macular Degeneration by Polarization-Sensitive Optical Coherence Tomography. American Journal of Ophthalmology, 2015, 160, 335-344.e1.	1.7	47
71	Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology. Biomedical Optics Express, 2012, 3, 2720.	1.5	46
72	Effect of intravitreal dexamethasone implant on intraâ€ocular cytokines and chemokines in eyes with retinal vein occlusion. Acta Ophthalmologica, 2017, 95, e119-e127.	0.6	46

#	Article	IF	CITATIONS
73	Guidance for the treatment of neovascular age-related macular degeneration. Acta Ophthalmologica, 2007, 85, 486-494.	0.4	45
74	Efficacy and safety of intravitreal aflibercept injection in wet age-related macular degeneration: outcomes in the Japanese subgroup of the VIEW 2 study. British Journal of Ophthalmology, 2015, 99, 92-97.	2.1	45
75	Motion artifact and speckle noise reduction in polarization sensitive optical coherence tomography by retinal tracking. Biomedical Optics Express, 2014, 5, 106.	1.5	44
76	Geographic Atrophy and Foveal-Sparing Changes Related to Visual Acuity in Patients With Dry Age-Related Macular Degeneration Over Time. American Journal of Ophthalmology, 2017, 179, 118-128.	1.7	44
77	A systematic correlation of morphology and function using spectral domain optical coherence tomography and microperimetry in patients with geographic atrophy. British Journal of Ophthalmology, 2014, 98, 1050-1055.	2.1	43
78	Comparative study between a spectral domain and a high-speed single-beam swept source OCTA system for identifying choroidal neovascularization in AMD. Scientific Reports, 2016, 6, 38132.	1.6	43
79	Computational image analysis for prognosis determination in DME. Vision Research, 2017, 139, 204-210.	0.7	42
80	Correlation of Central Retinal Thickness and Visual Acuity in Diabetic Macular Edema. JAMA Ophthalmology, 2018, 136, 1215.	1.4	40
81	Same-day administration of verteporfin and ranibizumab 0.5 mg in patients with choroidal neovascularisation due to age-related macular degeneration. British Journal of Ophthalmology, 2008, 92, 1628-1635.	2.1	39
82	Comparison of SD-Optical Coherence Tomography Angiography and Indocyanine Green Angiography in Type 1 and 2 Neovascular Age-related Macular Degeneration. , 2018, 59, 2393.		39
83	Predicting Macular Edema Recurrence from Spatio-Temporal Signatures in Optical Coherence Tomography Images. IEEE Transactions on Medical Imaging, 2017, 36, 1773-1783.	5.4	38
84	A Longitudinal Comparison of Spectral-Domain Optical Coherence Tomography and Fundus Autofluorescence in Geographic Atrophy. American Journal of Ophthalmology, 2014, 158, 557-566.e1.	1.7	37
85	Effectiveness and safety of ranibizumab 0.5 mg in treatment-naÃ⁻ve patients with diabetic macular edema: Results from the real-world global LUMINOUS study. PLoS ONE, 2020, 15, e0233595.	1.1	36
86	Reducing image variability across OCT devices with unsupervised unpaired learning for improved segmentation of retina. Biomedical Optics Express, 2020, 11, 346.	1.5	36
87	Optical coherence tomography in multiple sclerosis: A 3â€year prospective multicenter study. Annals of Clinical and Translational Neurology, 2021, 8, 2235-2251.	1.7	36
88	Antiâ€ <scp>VEGF</scp> treatment in branch retinal vein occlusion: a realâ€world experience over 4Âyears. Acta Ophthalmologica, 2015, 93, 719-725.	0.6	35
89	End-to-End Deep Learning Model for Predicting Treatment Requirements in Neovascular AMD From Longitudinal Retinal OCT Imaging. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3456-3465.	3.9	35
90	Evaluation of optical coherence tomography findings in age-related macular degeneration: a reproducibility study of two independent reading centres. British Journal of Ophthalmology, 2011, 95, 381-385.	2.1	34

#	Article	IF	CITATIONS
91	Quantitative comparison of macular segmentation performance using identical retinal regions across multiple spectral-domain optical coherence tomography instruments. British Journal of Ophthalmology, 2015, 99, 794-800.	2.1	34
92	Choroidal thickness maps from spectral domain and swept source optical coherence tomography: algorithmic versus ground truth annotation. British Journal of Ophthalmology, 2016, 100, 1372-1376.	2.1	34
93	U2-Net: A Bayesian U-Net Model With Epistemic Uncertainty Feedback For Photoreceptor Layer Segmentation In Pathological OCT Scans. , 2019, , .		34
94	Characterization of Stargardt Disease Using Polarization-Sensitive Optical Coherence Tomography and Fundus Autofluorescence Imaging. , 2013, 54, 6416.		33
95	Subretinal Drusenoid Deposits and Photoreceptor Loss Detecting Global and Local Progression of Geographic Atrophy by SD-OCT Imaging. , 2020, 61, 11.		33
96	Automated Quantitative Assessment of Retinal Fluid Volumes as Important Biomarkers in Neovascular Age-Related Macular Degeneration. American Journal of Ophthalmology, 2021, 224, 267-281.	1.7	33
97	ANALYSIS OF FLUID VOLUME AND ITS IMPACT ON VISUAL ACUITY IN THE FLUID STUDY AS QUANTIFIED WITH DEEP LEARNING. Retina, 2021, 41, 1318-1328.	1.0	32
98	Lesion Size Detection in Geographic Atrophy by Polarization-Sensitive Optical Coherence Tomography and Correlation to Conventional Imaging Techniques. , 2013, 54, 739.		31
99	Spatial Correspondence Between Intraretinal Fluid, Subretinal Fluid, and Pigment Epithelial Detachment in Neovascular Age-Related Macular Degeneration. , 2017, 58, 4039.		30
100	Development of Surgical Management in Primary Rhegmatogenous Retinal Detachment Treatment from 2009 to 2015. Current Eye Research, 2018, 43, 517-525.	0.7	30
101	Al-based monitoring of retinal fluid in disease activity and under therapy. Progress in Retinal and Eye Research, 2022, 86, 100972.	7.3	30
102	The role of choroidal hypoperfusion associated with photodynamic therapy in neovascular age-related macular degeneration and the consequences for combination strategies. Progress in Retinal and Eye Research, 2009, 28, 145-154.	7.3	29
103	Analyzing and Predicting Visual Acuity Outcomes of Anti-VEGF Therapy by a Longitudinal Mixed Effects Model of Imaging and Clinical Data. , 2017, 58, 4173.		29
104	SAVE: a grading protocol for clinically significant diabetic macular oedema based on optical coherence tomography and fluorescein angiography. British Journal of Ophthalmology, 2014, 98, 1612-1617.	2.1	28
105	Relationship of Retinal Morphology and Retinal Sensitivity in the Treatment of Neovascular Age-Related Macular Degeneration Using Aflibercept. Investigative Ophthalmology and Visual Science, 2015, 56, 1158-1167.	3.3	28
106	THREE-DIMENSIONAL ANALYSIS OF RETINAL MICROANEURYSMS WITH ADAPTIVE OPTICS OPTICAL COHERENCE TOMOGRAPHY. Retina, 2019, 39, 465-472.	1.0	28
107	Indocyanine Green Angiography and Retinal Sensitivity After Photodynamic Therapy of Subfoveal Choroidal Neovascularization. Seminars in Ophthalmology, 1999, 14, 35-44.	0.8	27
108	Ultrastructural Changes in a Murine Model of Graded Bruch Membrane Lipoidal Degeneration and Corresponding VEGF164Detection. , 2008, 49, 390.		27

#	Article	IF	CITATIONS
109	Automated quantification of macular fluid in retinal diseases and their response to anti-VEGF therapy. British Journal of Ophthalmology, 2022, 106, 113-120.	2.1	27
110	The Effect of Pegcetacoplan Treatment on Photoreceptor Maintenance in Geographic Atrophy Monitored by Artificial Intelligence–Based OCT Analysis. Ophthalmology Retina, 2022, 6, 1009-1018.	1.2	27
111	Retinal pigment epithelium cells produce VEGF in response to oxidized phospholipids through mechanisms involving ATF4 and protein kinase CK2. Experimental Eye Research, 2013, 116, 177-184.	1.2	25
112	A Quantitative Approach to Identify Morphological Features Relevant for Visual Function in Ranibizumab Therapy of Neovascular AMD. , 2014, 55, 6623.		25
113	Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting. Biomedical Optics Express, 2016, 7, 1783.	1.5	25
114	The Distribution of Leakage on Fluorescein Angiography in Diabetic Macular Edema: A New Approach to Its Etiology. , 2017, 58, 3986.		25
115	Eyetracker-based gaze correction for robust mapping of population receptive fields. NeuroImage, 2016, 142, 211-224.	2.1	24
116	Association of Changes in Macular Perfusion With Ranibizumab Treatment for Diabetic Macular Edema. JAMA Ophthalmology, 2018, 136, 315.	1.4	24
117	Identification and Quantification of the Angiofibrotic Switch in Neovascular AMD. , 2019, 60, 304.		24
118	Predicting Progression of Age-Related Macular Degeneration Using OCT and Fundus Photography. Ophthalmology Retina, 2021, 5, 118-125.	1.2	24
119	Influence of the vitreomacular interface on the efficacy of intravitreal therapy for uveitisâ€associated cystoid macular oedema. Acta Ophthalmologica, 2015, 93, e561-7.	0.6	23
120	Retinal and Corneal Neurodegeneration and Their Association with Systemic Signs of Peripheral Neuropathy in Type 2 Diabetes. American Journal of Ophthalmology, 2020, 209, 197-205.	1.7	23
121	Topographic Distribution and Progression of Soft Drusen Volume in Age-Related Macular Degeneration Implicate Neurobiology of Fovea. , 2021, 62, 26.		23
122	Motion Artefact Correction in Retinal Optical Coherence Tomography Using Local Symmetry. Lecture Notes in Computer Science, 2014, 17, 130-137.	1.0	23
123	Effectiveness of averaging strategies to reduce variance in retinal nerve fibre layer thickness measurements using spectral-domain optical coherence tomography. Graefe's Archive for Clinical and Experimental Ophthalmology, 2013, 251, 1841-1848.	1.0	22
124	Multivendor Spectral-Domain Optical Coherence Tomography Dataset, Observer Annotation Performance Evaluation, and Standardized Evaluation Framework for Intraretinal Cystoid Fluid Segmentation. Journal of Ophthalmology, 2016, 2016, 1-8.	0.6	22
125	Supervised learning and dimension reduction techniques for quantification of retinal fluid in optical coherence tomography images. Eye, 2017, 31, 1212-1220.	1.1	22
126	Compact akinetic swept source optical coherence tomography angiography at 1060 nm supporting a wide field of view and adaptive optics imaging modes of the posterior eye. Biomedical Optics Express, 2018, 9, 1871.	1.5	22

#	Article	IF	CITATIONS
127	Morphologic and Functional Assessment of Photoreceptors After Macula-Off Retinal Detachment With Adaptive-Optics OCT and Microperimetry. American Journal of Ophthalmology, 2020, 214, 72-85.	1.7	22
128	Unbiased identification of novel subclinical imaging biomarkers using unsupervised deep learning. Scientific Reports, 2020, 10, 12954.	1.6	22
129	Performance of OCT segmentation procedures to assess morphology and extension in geographic atrophy. Acta Ophthalmologica, 2011, 89, 235-240.	0.6	21
130	Repeatability and reliability of quantitative fundus autofluorescence imaging in patients with early and intermediate ageâ€related macular degeneration. Acta Ophthalmologica, 2019, 97, e526-e532.	0.6	21
131	TOPOGRAPHIC ANALYSIS OF PHOTORECEPTOR LOSS CORRELATED WITH DISEASE MORPHOLOGY IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina, 2020, 40, 2148-2157.	1.0	21
132	Automated Quantification of Photoreceptor alteration in macular disease using Optical Coherence Tomography and Deep Learning. Scientific Reports, 2020, 10, 5619.	1.6	21
133	Macula-On Versus Macula-Off Pseudophakic Rhegmatogenous Retinal Detachment Following Primary 23-Gauge Vitrectomy Plus Endotamponade. Current Eye Research, 2015, 41, 1-8.	0.7	20
134	Impact of Drusen Volume on Quantitative Fundus Autofluorescence in Early and Intermediate Age-Related Macular Degeneration. , 2019, 60, 1937.		20
135	Polarization-Sensitive Optical Coherence Tomography and Conventional Retinal Imaging Strategies in Assessing Foveal Integrity in Geographic Atrophy. , 2015, 56, 5246.		19
136	Detailed analysis of retinal morphology in patients with diabetic macular edema (DME) randomized to ranibizumab or triamcinolone treatment. Graefe's Archive for Clinical and Experimental Ophthalmology, 2018, 256, 49-58.	1.0	19
137	Longitudinal analysis of microvascular perfusion and neurodegenerative changes in early type 2 diabetic retinal disease. British Journal of Ophthalmology, 2022, 106, 528-533.	2.1	19
138	Evaluating the impact of vitreomacular adhesion on anti-VEGF therapy for retinal vein occlusion using machine learning. Scientific Reports, 2017, 7, 2928.	1.6	18
139	Regional Patterns of Retinal Oxygen Saturation and Microvascular Hemodynamic Parameters Preceding Retinopathy in Patients With Type II Diabetes. , 2017, 58, 5541.		18
140	Correspondence between retinotopic cortical mapping and conventional functional and morphological assessment of retinal disease. British Journal of Ophthalmology, 2019, 103, 208-215.	2.1	18
141	Retinal vessel architecture in retinopathy of prematurity and healthy controls using sweptâ€source optical coherence tomography angiography. Acta Ophthalmologica, 2021, 99, e232-e239.	0.6	18
142	Artificial scotoma estimation based on population receptive field mapping. NeuroImage, 2018, 169, 342-351.	2.1	17
143	THE RAP STUDY, REPORT TWO. Retina, 2020, 40, 2255-2262.	1.0	17
144	IMPACT OF RESIDUAL SUBRETINAL FLUID VOLUMES ON TREATMENT OUTCOMES IN A SUBRETINAL FLUID–TOLERANT TREAT-AND-EXTEND REGIMEN. Retina, 2021, 41, 2221-2228.	1.0	17

#	Article	IF	CITATIONS
145	Automated Fovea Detection in Spectral Domain Optical Coherence Tomography Scans of Exudative Macular Disease. International Journal of Biomedical Imaging, 2016, 2016, 1-9.	3.0	16
146	Retinal pigment epithelial features indicative of neovascular progression in age-related macular degeneration. British Journal of Ophthalmology, 2017, 101, 1361-1366.	2.1	16
147	Comparison of Dexamethasone Intravitreal Implant with Conventional Triamcinolone in Patients with Postoperative Cystoid Macular Edema. Current Eye Research, 2017, 42, 648-652.	0.7	16
148	Correlation of retinal neurodegeneration with measures of peripheral autonomic neuropathy in type 1 diabetes. Acta Ophthalmologica, 2018, 96, e804-e810.	0.6	16
149	Simultaneous Bilateral Pediatric and Juvenile Cataract Surgery Under General Anesthesia: Outcomes and Safety. American Journal of Ophthalmology, 2020, 214, 63-71.	1.7	16
150	Spatio-Temporal Signatures to Predict Retinal Disease Recurrence. Lecture Notes in Computer Science, 2015, 24, 152-163.	1.0	16
151	Three-Dimensional Adaptive Optics–Assisted Visualization of Photoreceptors in Healthy and Pathologically Aged Eyes. , 2019, 60, 1144.		15
152	Analysis of retinal layer thickness in diabetic macular oedema treated with ranibizumab or triamcinolone. Acta Ophthalmologica, 2018, 96, e195-e200.	0.6	14
153	Impact of Intra- and Subretinal Fluid on Vision Based on Volume Quantification in the HARBOR Trial. Ophthalmology Retina, 2022, 6, 291-297.	1.2	14
154	Therapeutic response in the HAWK and HARRIER trials using deep learning in retinal fluid volume and compartment analysis. Eye, 2023, 37, 1160-1169.	1.1	14
155	Tyrosinase-Cre-Mediated Deletion of the Autophagy Gene Atg7 Leads to Accumulation of the RPE65 Variant M450 in the Retinal Pigment Epithelium of C57BL/6 Mice. PLoS ONE, 2016, 11, e0161640.	1.1	13
156	Axon numbers and landmarks of trigeminal donor nerves for corneal neurotization. PLoS ONE, 2018, 13, e0206642.	1.1	13
157	Correlation between corneal and retinal neurodegenerative changes and their association with microvascular perfusion in type II diabetes. Acta Ophthalmologica, 2019, 97, e545-e550.	0.6	13
158	Disorganization of Retinal Inner Layers and the Importance of Setting Boundaries. JAMA Ophthalmology, 2019, 137, 46.	1.4	13
159	Neuroretinal atrophy following resolution of macular oedema in retinal vein occlusion. British Journal of Ophthalmology, 2019, 103, 36-42.	2.1	13
160	The impact of structural optical coherence tomography changes on visual function in retinal vein occlusion. Acta Ophthalmologica, 2021, 99, 418-426.	0.6	13
161	Spatio-temporal alterations in retinal and choroidal layers in the progression of age-related macular degeneration (AMD) in optical coherence tomography. Scientific Reports, 2021, 11, 5743.	1.6	13
162	Fundus autofluorescence and optical coherence tomography biomarkers associated with the progression of geographic atrophy secondary to age-related macular degeneration. Eye, 2021, , .	1.1	13

#	Article	IF	CITATIONS
163	Perspectives on Verteporfin Therapy Combined With Intravitreal Corticosteroids. JAMA Ophthalmology, 2006, 124, 561.	2.6	12
164	Visual outcome and surgical results in children with Marfan syndrome. Clinical and Experimental Ophthalmology, 2019, 47, 1138-1145.	1.3	12
165	Intravitreal Fluocinolone Acetonide May Decelerate Diabetic Retinal Neurodegeneration. , 2019, 60, 2134.		12
166	Silicone Oil Tamponade in Rhegmatogenous Retinal Detachment: Functional and Morphological Results. Current Eye Research, 2020, 45, 38-45.	0.7	12
167	INVESTIGATING A GROWTH PREDICTION MODEL IN ADVANCED AGE-RELATED MACULAR DEGENERATION WITH SOLITARY GEOGRAPHIC ATROPHY USING QUANTITATIVE AUTOFLUORESCENCE. Retina, 2020, 40, 1657-1664.	1.0	12
168	State-of-the art pharmacotherapy for non-neovascular age-related macular degeneration. Expert Opinion on Pharmacotherapy, 2020, 21, 773-784.	0.9	12
169	Analysis of retinal nerve fiber layer birefringence in patients with glaucoma and diabetic retinopathy by polarization sensitive OCT. Biomedical Optics Express, 2020, 11, 5488.	1.5	12
170	Baseline predictors for subretinal fibrosis in neovascular age-related macular degeneration. Scientific Reports, 2022, 12, 88.	1.6	12
171	Comparison of early diabetic retinopathy staging in asymptomatic patients between autonomous Al-based screening and human-graded ultra-widefield colour fundus images. Eye, 2022, 36, 510-516.	1.1	12
172	Polarisation-sensitive OCT is useful for evaluating retinal pigment epithelial lesions in patients with neovascular AMD. British Journal of Ophthalmology, 2016, 100, 371-377.	2.1	11
173	Effects of Intravitreal Dexamethasone Implants on Retinal Oxygen Saturation, Vessel Diameter, and Retrobulbar Blood Flow Velocity in ME Secondary to RVO. , 2017, 58, 5022.		11
174	Dynamic Changes of Retinal Microaneurysms in Diabetes Imaged With In Vivo Adaptive Optics Optical Coherence Tomography. , 2018, 59, 5932.		11
175	Systematic ultrastructural comparison of swept-source and full-depth spectral domain optical coherence tomography imaging of diabetic macular oedema. British Journal of Ophthalmology, 2020, 104, 868-873.	2.1	11
176	SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY, FLUORESCEIN ANGIOGRAPHY, AND INDOCYANINE GREEN ANGIOGRAPHY COMPARISONS REVISITED. Retina, 2020, 40, 2010-2017.	1.0	11
177	MORPHOLOGICAL AND FUNCTIONAL CHARACTERISTICS AT THE ONSET OF EXUDATIVE CONVERSION IN AGE-RELATED MACULAR DEGENERATION. Retina, 2020, 40, 1070-1078.	1.0	11
178	Association of macular perfusion status with microvascular parameters up to the far periphery in diabetic retinopathy using multimodal imaging. International Journal of Retina and Vitreous, 2020, 6, 50.	0.9	11
179	RAP study, report 1: novel subtype of macular neovascularisation type III, cilioretinal MNV3. British Journal of Ophthalmology, 2021, 105, 113-117.	2.1	11
180	Profiling neovascular ageâ€related macular degeneration choroidal neovascularization lesion response to antiâ€vascular endothelial growth factor therapy using SSOCTA. Acta Ophthalmologica, 2021, 99, e240-e246.	0.6	11

#	Article	IF	CITATIONS
181	THE RAP STUDY, REPORT 5: REDISCOVERING MACULAR NEOVASCULARIZATION TYPE 3. Retina, 2022, 42, 485-493.	1.0	11
182	Three-Dimensional Angiography of Classic and Occult Lesion Types in Choroidal Neovascularization. , 2007, 48, 1751.		10
183	Randomized Multicenter Trial of More Intense and Standard Early Verteporfin Treatment of Neovascular Age-Related Macular Degeneration. Ophthalmology, 2008, 115, 134-140.	2.5	10
184	Autophagy mediates cell cycle response by regulating nucleocytoplasmic transport of PAX6 in limbal stem cells under ultraviolet-A stress. PLoS ONE, 2017, 12, e0180868.	1.1	10
185	Method comparison of two nonâ€invasive dualâ€wavelength spectrophotometric retinal oximeters in healthy young subjects during normoxia. Acta Ophthalmologica, 2018, 96, e614-e618.	0.6	10
186	Correlation between morphological characteristics in spectralâ€domainâ€optical coherence tomography, different functional tests and a patient's subjective handicap in acute central serous chorioretinopathy. Acta Ophthalmologica, 2018, 96, e776-e782.	0.6	10
187	Atrophy of the central neuroretina in patients treated for diabetic macular edema. Acta Ophthalmologica, 2019, 97, e1054-e1061.	0.6	10
188	SYSTEMATIC CORRELATION OF CENTRAL SUBFIELD THICKNESS WITH RETINAL FLUID VOLUMES QUANTIFIED BY DEEP LEARNING IN THE MAJOR EXUDATIVE MACULAR DISEASES. Retina, 2022, 42, 831-841.	1.0	10
189	High-Resolution Spectral Domain-Optical Coherence Tomography in Multiple Sclerosis, Part II – the Total Macular Volume. The First Follow-Up Study over 2 Years. Frontiers in Neurology, 2014, 5, 20.	1.1	9
190	A novel benchmark model for intelligent annotation of spectral-domain optical coherence tomography scans using the example of cyst annotation. Computer Methods and Programs in Biomedicine, 2016, 130, 93-105.	2.6	9
191	PRESENCE OF PERIPHERAL LESIONS AND CORRELATION TO MACULAR PERFUSION, OXYGENATION AND NEURODEGENERATION IN EARLY TYPE II DIABETIC RETINAL DISEASE. Retina, 2020, 40, 1964-1971.	1.0	9
192	Correlation of Retinal Thickness and Swept-Source Optical Coherence Tomography Angiography Derived Vascular Changes in Patients with Neovascular Age-Related Macular Degeneration. Current Eye Research, 2021, 46, 1002-1009.	0.7	9
193	Stable registration of pathological 3D-OCT scans using retinal vessels. , 0, , .		9
194	LONGITUDINAL CHANGES IN QUANTITATIVE AUTOFLUORESCENCE DURING PROGRESSION FROM INTERMEDIATE TO LATE AGE-RELATED MACULAR DEGENERATION. Retina, 2021, 41, 1236-1241.	1.0	9
195	Developing and validating a multivariable prediction model which predicts progression of intermediate to late age-related macular degeneration—the PINNACLE trial protocol. Eye, 2023, 37, 1275-1283.	1.1	9
196	Semiâ€automated quantification of geographic atrophy with blueâ€light autofluorescence and spectralâ€domain optical coherence tomography: a comparison between the region finder and the advanced retinal pigment epithelium tool in the clinical setting. Acta Ophthalmologica, 2019, 97, e887-e895.	0.6	8
197	Three-dimensional composition of the photoreceptor cone layers in healthy eyes using adaptive-optics optical coherence tomography (AO-OCT). PLoS ONE, 2021, 16, e0245293.	1.1	8
198	Identification of microvascular and morphological alterations in eyes with central retinal non-perfusion. PLoS ONE, 2020, 15, e0241753.	1.1	8

#	Article	IF	CITATIONS
199	The role of the optical coherence tomography in identifying shape and size of idiopathic epiretinal membranes. British Journal of Ophthalmology, 2012, 96, 867-871.	2.1	7
200	Spectral degree of polarization uniformity for polarization-sensitive OCT. Journal of Modern Optics, 2015, 62, 1758-1763.	0.6	7
201	Choroidal Neovascularization Induced by Immunogenic Alteration of the Retinal Pigment Epithelium in Dengue Fever. Case Reports in Ophthalmology, 2015, 6, 18-23.	0.3	7
202	EFFECT OF PATIENTS' CLINICAL INFORMATION ON THE DIAGNOSIS OF AND DECISION TO TREAT RETINOPATHY OF PREMATURITY. Retina, 2018, 38, 2253-2259.	1.0	7
203	COMPARISON OF GANGLION CELL INNER PLEXIFORM LAYER THICKNESS BY CIRRUS AND SPECTRALIS OPTICAL COHERENCE TOMOGRAPHY IN DIABETIC MACULAR EDEMA. Retina, 2018, 38, 820-827.	1.0	7
204	Longitudinal Association Between Drusen Volume and Retinal Capillary Perfusion in Intermediate Age-Related Macular Degeneration. , 2019, 60, 2503.		7
205	IMAGING OF VITELLIFORM MACULAR LESIONS USING POLARIZATION-SENSITIVE OPTICAL COHERENCE TOMOGRAPHY. Retina, 2019, 39, 558-569.	1.0	7
206	New Technologies for Outcome Measures in Retinal Disease: Review from the European Vision Institute Special Interest Focus Group. Ophthalmic Research, 2020, 63, 77-87.	1.0	7
207	Clinical characteristics and treatment of secondary glaucoma, glaucoma suspects and ocular hypertension after congenital cataract surgery. European Journal of Ophthalmology, 2021, 31, 3309-3317.	0.7	7
208	Incidence and surgical care of retinal detachment during the first SARS-CoV-2 lockdown period at a tertiary referral center in Austria. PLoS ONE, 2021, 16, e0248010.	1.1	7
209	The RAP study, report 3: Discoloration of the macular region in patients with macular neovascularization type 3. Acta Ophthalmologica, 2022, 100, .	0.6	7
210	Influence of lens opacities and cataract severity on quantitative fundus autofluorescence as a secondary outcome of a randomized clinical trial. Scientific Reports, 2021, 11, 12685.	1.6	7
211	The RAP study, report 4: morphological and topographical characteristics of multifocal macular neovascularization type 3. Graefe's Archive for Clinical and Experimental Ophthalmology, 2022, 260, 141-147.	1.0	7
212	Identification of Subclinical Microvascular Biomarkers in Coronary Heart Disease in Retinal Imaging. Translational Vision Science and Technology, 2021, 10, 24.	1.1	7
213	Linking Function and Structure with ReSensNet. Ophthalmology Retina, 2022, 6, 501-511.	1.2	7
214	Comparison of Fundus Autofluorescence Versus Optical Coherence Tomography–based Evaluation of the Therapeutic Response to Pegcetacoplan in Geographic Atrophy. American Journal of Ophthalmology, 2022, 244, 175-182.	1.7	7
215	Refractive Changes after Pharmacologic Resolution of Diabetic Macular Edema. Ophthalmology, 2014, 121, 1054-1058.	2.5	6
216	Detection and Differentiation of Intraretinal Hemorrhage in Spectral Domain Optical Coherence Tomography. Current Eye Research, 2015, 40, 1046-1054.	0.7	6

#	Article	IF	CITATIONS
217	Comparison of Spectralis and Cirrus spectral domain optical coherence tomography for the objective morphometric assessment of the neuroretinal rim width. Graefe's Archive for Clinical and Experimental Ophthalmology, 2019, 257, 1265-1275.	1.0	6
218	Ganglion cell layer thickening in well ontrolled patients with type 1 diabetes: an early sign for diabetic retinopathy?. Acta Ophthalmologica, 2020, 98, e292-e300.	0.6	6
219	POSTOPERATIVE MOVEMENT OF THE FOVEA AFTER SUCCESSFUL SURGERY IN PATIENTS WITH IDIOPATHIC EPIRETINAL MEMBRANES. Retina, 2021, 41, 510-515.	1.0	6
220	Clinical Decision Support for the Classification of Diabetic Retinopathy: A Comparison of Manual and Automated Results. Studies in Health Technology and Informatics, 2016, 223, 17-24.	0.2	6
221	Choroidal Line Scan Measurements in Swept-Source Optical Coherence Tomography as Surrogates for Volumetric Thickness Assessment. American Journal of Ophthalmology, 2016, 162, 150-158.e1.	1.7	5
222	Monitoring retinoschisis and nonâ€acute retinal detachment by optical coherence tomography: morphologic aspects and clinical impact. Acta Ophthalmologica, 2017, 95, 710-716.	0.6	5
223	On Orthogonal Projections for Dimension Reduction and Applications in Augmented Target Loss Functions for Learning Problems. Journal of Mathematical Imaging and Vision, 2020, 62, 376-394.	0.8	5
224	Effect of posterior vitreous detachment on treat-and-extend versus monthly ranibizumab for neovascular age-related macular degeneration. British Journal of Ophthalmology, 2020, 104, 899-903.	2.1	5
225	Shortâ€time effect of intravitreal injections on retinal vascular oxygenation and vessel diameter in patients with diabetic macular oedema or neovascular ageâ€related macular degeneration. Acta Ophthalmologica, 2020, 98, e301-e308.	0.6	5
226	Are There Funduscopic and Optical Coherence Tomography Preoperative Characteristics to Predict Surgical Difficulty of Epiretinal Membrane Removal?. Current Eye Research, 2020, 45, 1012-1016.	0.7	5
227	Response of Retinal Sensitivity to Intravitreal Anti-angiogenic Bevacizumab and Triamcinolone Acetonide for Patients with Diabetic Macular Edema over One Year. Current Eye Research, 2020, 45, 1107-1113.	0.7	5
228	Comparison of safety and effectiveness between 23-gauge and 25-gauge vitrectomy surgery in common vitreoretinal diseases. PLoS ONE, 2021, 16, e0248164.	1.1	5
229	Deep Learning Prediction Of Age And Sex From Optical Coherence Tomography. , 2021, , .		5
230	Combining stimulus types for improved coverage in population receptive field mapping. NeuroImage, 2021, 238, 118240.	2.1	5
231	Intraprocedural OCT monitoring of the immediate treatment response during indocyanine green angiography-guided laser therapy of teleangiectatic capillaries in diabetic macular edema. Scientific Reports, 2022, 12, 2315.	1.6	5
232	Personalized treatment supported by automated quantitative fluid analysis in active neovascular age-related macular degeneration (nAMD)—a phase III, prospective, multicentre, randomized study: design and methods. Eye, 2023, 37, 1464-1469.	1.1	5
233	Segmentation of macular neovascularization and leakage in fluorescein angiography images in neovascular age-related macular degeneration using deep learning. Eye, 2023, 37, 1439-1444.	1.1	5
234	Impact of B-Scan Averaging on Spectralis Optical Coherence Tomography Image Quality before and after Cataract Surgery. Journal of Ophthalmology, 2017, 2017, 1-8.	0.6	4

#	Article	IF	CITATIONS
235	Electrophysiological findings show generalised post-photoreceptoral deficiency in macular telangiectasia type 2. British Journal of Ophthalmology, 2018, 102, 114-119.	2.1	4
236	The prevalence of retinopathy in patients with type 1 diabetes treated with education-based intensified insulin therapy and its association with parameters of glucose control. Diabetes Research and Clinical Practice, 2019, 148, 234-239.	1.1	4
237	Clinical Practice Settings vs Clinical Trials. JAMA Ophthalmology, 2020, 138, 5.	1.4	4
238	Intraretinal microvascular changes after ERM and ILM peeling using SSOCTA. PLoS ONE, 2020, 15, e0242667.	1.1	4
239	Assessment of Detailed Photoreceptor Structure and Retinal Sensitivity in Diabetic Macular Ischemia Using Adaptive Optics-OCT and Microperimetry. , 2021, 62, 1.		4
240	Automatic segmentation of intraocular lens, the retrolental space and Berger's space using deep learning. Acta Ophthalmologica, 2022, 100, .	0.6	4
241	Author reply. Ophthalmology, 2014, 121, e5-e6.	2.5	3
242	eHealth 2015 Special Issue: Impact of Electronic Health Records on the Completeness of Clinical Documentation Generated during Diabetic Retinopathy Consultations. Applied Clinical Informatics, 2015, 06, 478-487.	0.8	3
243	Relationship between morphological and vascular alterations in geographic atrophy using a multimodal imaging approach. Acta Ophthalmologica, 2020, 98, e700-e708.	0.6	3
244	Minimal residual disease—a novel concept in uveal melanoma. Eye, 2021, 35, 702-704.	1.1	3
245	Early Identification of Retinal Neuropathy in Subclinical Diabetic Eyes by Reduced Birefringence of the Peripapillary Retinal Nerve Fiber Layer. , 2021, 62, 24.		3
246	The Challenges of Treating Neovascular Age-Related Macular Degeneration. Klinische Monatsblatter Fur Augenheilkunde, 2021, , .	0.3	3
247	The Postoperative Course of Choroidal and Central Retinal Thickness in Epiretinal Membranes with Respect to Membrane Severity. Ophthalmic Research, 2021, 64, 1020-1028.	1.0	3
248	The Spectrum of Internal Limiting Membrane Disease in Alport Syndrome. Retina, 2021, Publish Ahead of Print, .	1.0	3
249	Quantitative assessment of retinal fluid in neovascular age-related macular degeneration under anti-VEGF therapy. Therapeutic Advances in Ophthalmology, 2022, 14, 251584142210833.	0.8	3
250	Detailed analysis of retinal morphology in patients with diabetic macular edema (DME) randomized to ranibizumab or triamcinolone treatment — reply to the letter to the editor. Graefe's Archive for Clinical and Experimental Ophthalmology, 2018, 256, 1039-1040.	1.0	2
251	Early ultrasonographic tumor regression after linear accelerator stereotactic fractionated photon radiotherapy of choroidal melanoma as a predictor for metastatic spread. Radiotherapy and Oncology, 2018, 127, 385-391.	0.3	2
252	Retinal and Choroidal Perfusion Status in the Area of Laser Scars Assessed With Swept-Source Optical Coherence Tomography Angiography. , 2019, 60, 4865.		2

#	Article	IF	CITATIONS
253	New Technologies for Outcome Measures in Glaucoma: Review by the European Vision Institute Special Interest Focus Group. Ophthalmic Research, 2020, 63, 88-96.	1.0	2
254	Deep Learning–Based Automated Optical Coherence Tomography Segmentation in Clinical Routine. JAMA Ophthalmology, 2021, 139, 973.	1.4	2
255	Microvascular abnormalities and long-term efficacy after stereotactic radiotherapy under continued intravitreal anti-VEGF treatment for neovascular AMD. British Journal of Ophthalmology, 2020, , bjophthalmol-2020-317563.	2.1	2
256	Macular Telangiectasia type 2: multimodal assessment of retinal function and microstructure. Acta Ophthalmologica, 2021, , .	0.6	2
257	Evaluation of neuroretinal integrity in optical coherence tomographyâ€graded eyes with partialâ€thickness macular holes. Acta Ophthalmologica, 2022, 100, .	0.6	2
258	Treatment of branch retinal vein occlusion. Expert Review of Ophthalmology, 2009, 4, 661-669.	0.3	1
259	A focus on the imaging of the retina. Expert Review of Ophthalmology, 2015, 10, 595-611.	0.3	1
260	Extension of peripheral nonperfusion in eyes with retinal vein occlusion during intravitreal dexamethasone treatment. Acta Ophthalmologica, 2018, 96, e455-e459.	0.6	1
261	OCT fluid detection and quantification. , 2019, , 273-298.		1
262	Reply. Ophthalmology, 2019, 126, e96-e97.	2.5	1
263	Is automated screening for diabetic retinopathy indeed not yet ready as stated by Grauslund etÂal.?. Acta Ophthalmologica, 2020, 98, e257-e258.	0.6	1
264	Impact of large choroidal vessels on choriocapillaris flow deficit analyses in optical coherence tomography angiography. PLoS ONE, 2021, 16, e0254955.	1.1	1
265	Predicting Drusen Regression from OCT in Patients with Age-Related Macular Degeneration. , 0, , .		1
266	Association of microvascular biomarkers in fluorescein angiography with macrovascular-related mortality in clinical routine data. PLoS ONE, 2022, 17, e0266423.	1.1	1
267	From the eye into the foot?. Atherosclerosis, 2020, 294, 41-43.	0.4	0
268	Reply to Comment on: Retinal and Corneal Neurodegeneration and Its Association to Systemic Signs of Peripheral Neuropathy in Type 2 Diabetes. American Journal of Ophthalmology, 2020, 216, 287-288.	1.7	0
269	The influence of retinal oxygen saturation and choroidal volume on postoperative outcomes in patients with epiretinal membrane. Acta Ophthalmologica, 2021, , .	0.6	0
270	Interaction between leukocytes and erythrocytes in the human retina: Effects of pentoxifylline on hyperoxia-induced vasoconstriction during increased neutrophil counts. Acta Ophthalmologica, 2014, 92, 0-0.	0.6	0

#	Article	IF	CITATIONS
271	A novel approach for the assessment of population receptive field mapping results. Journal of Vision, 2019, 19, 278b.	0.1	0
272	OphthalNet Vienna: constructive quality assurance and resource optimization in ophthalmology. Studies in Health Technology and Informatics, 2014, 198, 156-63.	0.2	0
273	Connecting cloud-based personal health records with an XDS affinity domain to provide additional information at the point-of-care. Studies in Health Technology and Informatics, 2014, 198, 196-202.	0.2	0
274	Microvascular retinal changes in patients with Marfan syndrome. Current Eye Research, 2022, , 1-21.	0.7	0
275	Title is missing!. , 2021, 16, e0245293.		0
276	Title is missing!. , 2021, 16, e0245293.		0
277	Title is missing!. , 2021, 16, e0245293.		0
278	Title is missing!. , 2021, 16, e0245293.		0
279	Retrospective analysis of congenital nasolacrimal duct obstruction outcomes in aÂtertiary referral center. Spektrum Der Augenheilkunde, 0, , .	0.2	0