Fiona H Amante

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6122635/publications.pdf

Version: 2024-02-01

471061 476904 1,096 29 17 29 citations h-index g-index papers 31 31 31 1886 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Transmission Blocking Activity of Low-dose Tafenoquine in Healthy Volunteers Experimentally Infected With <i>Plasmodium falciparum</i> . Clinical Infectious Diseases, 2023, 76, 506-512.	2.9	4
2	Safety and feasibility of apheresis to harvest and concentrate parasites from subjects with induced blood stage Plasmodium vivax infection. Malaria Journal, 2021, 20, 43.	0.8	3
3	Development and evaluation of a new Plasmodium falciparum 3D7 blood stage malaria cell bank for use in malaria volunteer infection studies. Malaria Journal, 2021, 20, 93.	0.8	6
4	Reduced circulating dendritic cells in acute Plasmodium knowlesi and Plasmodium falciparum malaria despite elevated plasma Flt3 ligand levels. Malaria Journal, 2021, 20, 97.	0.8	3
5	Safety, infectivity and immunogenicity of a genetically attenuated blood-stage malaria vaccine. BMC Medicine, 2021, 19, 293.	2.3	6
6	IL-27 signalling regulates glycolysis in Th1 cells to limit immunopathology during infection. PLoS Pathogens, 2020, 16, e1008994.	2.1	15
7	The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nature Immunology, 2020, 21, 1205-1218.	7.0	110
8	Antiphosphatidylserine Immunoglobulin M and Immunoglobulin G Antibodies Are Higher in Vivax Than Falciparum Malaria, and Associated With Early Anemia in Both Species. Journal of Infectious Diseases, 2019, 220, 1435-1443.	1.9	26
9	A molecular signature for CD8 ⁺ T cells from visceral leishmaniasis patients. Parasite Immunology, 2019, 41, e12669.	0.7	12
10	Interleukin 2 is an Upstream Regulator of CD4+ T Cells From Visceral Leishmaniasis Patients With Therapeutic Potential. Journal of Infectious Diseases, 2019, 220, 163-173.	1.9	8
11	Plasmodium falciparum Activates CD16+ Dendritic Cells to Produce Tumor Necrosis Factor and Interleukin-10 in Subpatent Malaria. Journal of Infectious Diseases, 2019, 219, 660-671.	1.9	17
12	The Role of BACH2 in T Cells in Experimental Malaria Caused by Plasmodium chabaudi chabaudi AS. Frontiers in Immunology, 2018, 9, 2578.	2.2	5
13	Distinct Roles for CD4+ Foxp3+ Regulatory T Cells and IL-10–Mediated Immunoregulatory Mechanisms during Experimental Visceral Leishmaniasis Caused by ⟨i⟩Leishmania donovani⟨/i⟩. Journal of Immunology, 2018, 201, 3362-3372.	0.4	34
14	Early Changes in CD4+ T-Cell Activation During Blood-Stage Plasmodium falciparum Infection. Journal of Infectious Diseases, 2018, 218, 1119-1129.	1.9	17
15	Plasmacytoid dendritic cells appear inactive during sub-microscopic Plasmodium falciparum blood-stage infection, yet retain their ability to respond to TLR stimulation. Scientific Reports, 2017, 7, 2596.	1.6	24
16	Galectin-1 Impairs the Generation of Anti-Parasitic Th1 Cell Responses in the Liver during Experimental Visceral Leishmaniasis. Frontiers in Immunology, 2017, 8, 1307.	2.2	9
17	Combined Immune Therapy for the Treatment of Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2016, 10, e0004415.	1.3	33
18	Type I Interferons Regulate Immune Responses in Humans with Blood-Stage Plasmodium falciparum Infection. Cell Reports, 2016, 17, 399-412.	2.9	88

#	Article	IF	CITATIONS
19	Programmed Death-1 Ligand 2-Mediated Regulation of the PD-L1 to PD-1 Axis Is Essential for Establishing CD4 + T Cell Immunity. Immunity, 2016, 45, 333-345.	6.6	92
20	Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology. PLoS Pathogens, 2016, 12, e1005398.	2.1	92
21	IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection. PLoS Pathogens, 2016, 12, e1005999.	2.1	52
22	Coinfection with Blood-Stage Plasmodium Promotes Systemic Type I Interferon Production during Pneumovirus Infection but Impairs Inflammation and Viral Control in the Lung. Vaccine Journal, 2015, 22, 477-483.	3.2	20
23	IL-17A–Producing γδT Cells Suppress Early Control of Parasite Growth by Monocytes in the Liver. Journal of Immunology, 2015, 195, 5707-5717.	0.4	25
24	Tissue Requirements for Establishing Long-Term CD4+ T Cellâ€"Mediated Immunity following <i>Leishmania donovani</i> Infection. Journal of Immunology, 2014, 192, 3709-3718.	0.4	23
25	Critical Roles for LIGHT and Its Receptors in Generating T Cell-Mediated Immunity during Leishmania donovani Infection. PLoS Pathogens, 2011, 7, e1002279.	2.1	26
26	Activation of Invariant NKT Cells Exacerbates Experimental Visceral Leishmaniasis. PLoS Pathogens, 2008, 4, e1000028.	2.1	53
27	A Role for Natural Regulatory T Cells in the Pathogenesis of Experimental Cerebral Malaria. American Journal of Pathology, 2007, 171, 548-559.	1.9	155
28	Prolonged Th1â€like response generated by a Plasmodium yoeli â€specific T cell clone allows complete clearance of infection in reconstituted mice. Parasite Immunology, 1997, 19, 111-126.	0.7	83
29	High frequency of malaria-specific T cells in non-exposed humans. European Journal of Immunology, 1992, 22, 689-696.	1.6	55