Peter L Molloy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6122528/publications.pdf

Version: 2024-02-01

99 papers 11,013 citations

44 h-index

66250

92 g-index

101 all docs

101 docs citations

101 times ranked

16916 citing authors

#	Article	IF	Citations
1	Batch-effect detection, correction and characterisation in Illumina HumanMethylation450 and MethylationEPIC BeadChip array data. Clinical Epigenetics, 2022, 14, 58.	1.8	9
2	DNA methylation enables transposable element-driven genome expansion. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19359-19366.	3.3	109
3	Epigenetic aging in newborns: role of maternal diet. American Journal of Clinical Nutrition, 2020, 111, 555-561.	2.2	20
4	Methylome and transcriptome maps of human visceral and subcutaneous adipocytes reveal key epigenetic differences at developmental genes. Scientific Reports, 2019, 9, 9511.	1.6	24
5	DNA methylation in blood from neonatal screening cards and the association with BMI and insulin sensitivity in early childhood. International Journal of Obesity, 2018, 42, 28-35.	1.6	76
6	Helper-Dependent Chain Reaction (HDCR) for Selective Amplification of Methylated DNA Sequences. Methods in Molecular Biology, 2018, 1708, 587-601.	0.4	1
7	Mother–child transmission of epigenetic information by tunable polymorphic imprinting. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11970-E11977.	3.3	33
8	<i>BRAF</i> å€^ <i>V600E</i> Mutant Colorectal Cancer Subtypes Based on Gene Expression. Clinical Cancer Research, 2017, 23, 104-115.	3.2	167
9	Smoke-Induced Changes to the Epigenome Provide Fertile Ground for Oncogenic Mutation. Cancer Cell, 2017, 32, 278-280.	7.7	13
10	Evaluation of Methylation Biomarkers for Detection of Circulating Tumor DNA and Application to Colorectal Cancer. Genes, 2016, 7, 125.	1.0	47
11	Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biology, 2016, 17, 208.	3.8	912
12	Effect of prenatal DHA supplementation on the infant epigenome: results from a randomized controlled trial. Clinical Epigenetics, 2016, 8, 114.	1.8	74
13	Relative telomere lengths in tumor and normal mucosa are related to disease progression and chromosome instability profiles in colorectal cancer. Oncotarget, 2016, 7, 36474-36488.	0.8	23
14	COBRA-Seq: Sensitive and Quantitative Methylome Profiling. Genes, 2015, 6, 1140-1163.	1.0	10
15	A Two-Gene Blood Test for Methylated DNA Sensitive for Colorectal Cancer. PLoS ONE, 2015, 10, e0125041.	1.1	59
16	De novo identification of differentially methylated regions in the human genome. Epigenetics and Chromatin, 2015, 8, 6.	1.8	684
17	Recent developments on the role of epigenetics in obesity and metabolic disease. Clinical Epigenetics, 2015, 7, 66.	1.8	162
18	Resistant Starch Alters Colonic Contractility and Expression of Related Genes in Rats Fed a Western Diet. Digestive Diseases and Sciences, 2015, 60, 1624-1632.	1.1	10

#	Article	IF	CITATIONS
19	Wild-type APC predicts poor prognosis in microsatellite-stable proximal colon cancer. British Journal of Cancer, 2015, 113, 979-988.	2.9	35
20	LipiD-QuanT: a novel method to quantify lipid accumulation in live cells. Journal of Lipid Research, 2015, 56, 2206-2216.	2.0	18
21	Epigenetics and human obesity. International Journal of Obesity, 2015, 39, 85-97.	1.6	283
22	<i>CAHM</i> , a long non-coding RNA gene hypermethylated in colorectal neoplasia. Epigenetics, 2014, 9, 1071-1082.	1.3	41
23	A panel of genes methylated with high frequency in colorectal cancer. BMC Cancer, 2014, 14, 54.	1.1	138
24	CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 372-386.	1.9	181
25	Methylated Glutathione S-transferase 1 (mGSTP1) is a potential plasma free DNA epigenetic marker of prognosis and response to chemotherapy in castrate-resistant prostate cancer. British Journal of Cancer, 2014, 111, 1802-1809.	2.9	77
26	Methylated glutathione s-transferase 1 (mGSTP1) as a potential plasma epigenetic marker of prognosis and response to chemotherapy in castrate-resistant prostate cancer (CRPC) Journal of Clinical Oncology, 2014, 32, 11-11.	0.8	6
27	An association between the PTGS2 rs5275 polymorphism and colorectal cancer risk in families with inherited non-syndromic predisposition. European Journal of Human Genetics, 2013, 21, 1389-1395.	1.4	6
28	Use of multivariate analysis to suggest a new molecular classification of colorectal cancer. Journal of Pathology, 2013, 229, 441-448.	2.1	80
29	Survival in stage II/III colorectal cancer is independently predicted by chromosomal and microsatellite instability, but not by specific driver mutations. American Journal of Gastroenterology, 2013, 108, 1785-1793.	0.2	120
30	Identification of differentially methylated regions using streptavidin bisulfite ligand methylation enrichment (SuBLiME), a new method to enrich for methylated DNA prior to deep bisulfite genomic sequencing. Epigenetics, 2013, 8, 113-127.	1.3	7
31	<i>PIK3CA</i> and <i>PTEN</i> Gene and Exon Mutation-Specific Clinicopathologic and Molecular Associations in Colorectal Cancer. Clinical Cancer Research, 2013, 19, 3285-3296.	3.2	107
32	Sensitive and selective amplification of methylated DNA sequences using helper-dependent chain reaction in combination with a methylation-dependent restriction enzymes. Nucleic Acids Research, 2013, 41, e15-e15.	6.5	16
33	Resistant Starches Protect against Colonic DNA Damage and Alter Microbiota and Gene Expression in Rats Fed a Western Diet. Journal of Nutrition, 2012, 142, 832-840.	1.3	103
34	Evidence of linkage to chromosomes 10p15.3–p15.1, 14q24.3–q31.1 and 9q33.3–q34.3 in non-syndromic colorectal cancer families. European Journal of Human Genetics, 2012, 20, 91-96.	1.4	11
35	Relative Distribution of Folate Species Is Associated with Global DNA Methylation in Human Colorectal Mucosa. Cancer Prevention Research, 2012, 5, 921-929.	0.7	19
36	CRNDE: A Long Non-Coding RNA Involved in CanceR, Neurobiology, and DEvelopment. Frontiers in Genetics, 2012, 3, 270.	1.1	199

3

#	Article	IF	Citations
37	Discovery and Validation of Molecular Biomarkers for Colorectal Adenomas and Cancer with Application to Blood Testing. PLoS ONE, 2012, 7, e29059.	1.1	33
38	Abstract 3125: Relative distribution of folate species is associated with global DNA methylation in human colorectal mucosa. , 2012, , .		18
39	Colorectal Neoplasia Differentially Expressed (CRNDE), a Novel Gene with Elevated Expression in Colorectal Adenomas and Adenocarcinomas. Genes and Cancer, 2011, 2, 829-840.	0.6	219
40	Recombinant mammalian DNA methyltransferase activity on model transcriptional gene silencing short RNA–DNA heteroduplex substrates. Biochemical Journal, 2010, 432, 323-332.	1.7	20
41	Hypomethylation of repeated DNA sequences in cancer. Epigenomics, 2010, 2, 245-269.	1.0	105
42	Sensitive measurement of unmethylated repeat DNA sequences by end-specific PCR. BioTechniques, 2010, 49, xiii-xvii.	0.8	11
43	Map of differential transcript expression in the normal human large intestine. Physiological Genomics, 2008, 33, 50-64.	1.0	75
44	DNA Hypomethylation in Cancer., 2008,, 7-37.		2
45	DNA hypomethylation and human diseases. Biochimica Et Biophysica Acta: Reviews on Cancer, 2007, 1775, 138-162.	3.3	469
46	DNA methylation: Bisulphite modification and analysis. Nature Protocols, 2006, 1, 2353-2364.	5.5	326
47	Bisulphite Differential Denaturation PCR for Analysis of DNA Methylation. Epigenetics, 2006, 1, 94-100.	1.3	8
48	Headloop suppression PCR and its application to selective amplification of methylated DNA sequences. Nucleic Acids Research, 2005, 33, e127-e127.	6.5	39
49	Preclinical evaluation of a prostate-targeted gene-directed enzyme prodrug therapy delivered by ovine atadenovirus. Gene Therapy, 2004, 11, 1559-1567.	2.3	30
50	Cytotoxic properties of immunoconjugates containing melittin-like peptide 101 against prostate cancer: in vitro and in vivo studies. Cancer Immunology, Immunotherapy, 2004, 53, 411-421.	2.0	78
51	Bisulfite Methylation Analysis of Tumor Suppressor Genes in Prostate Cancer from Fresh and Archival Tissue Samples., 2003, 81, 219-240.		3
52	Enhancer Trap Method Using a Green Fluorescent Protein Reporter Plasmid for Cloning Tissue-Specific Enhancers Active in Prostate Cells., 2003, 81, 321-332.		0
53	Calcitonin-Specific Transcription and Splicing Targets Gene-Directed Enzyme Prodrug Therapy to Medullary Thyroid Carcinoma Cells. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 1310-1318.	1.8	10
54	Hypermethylation of the Inhibin α-Subunit Gene in Prostate Carcinoma. Molecular Endocrinology, 2002, 16, 213-220.	3.7	34

#	Article	IF	CITATIONS
55	Conversion-specific detection of DNA methylation using real-time polymerase chain reaction (ConLight-MSP) to avoid false positives. Methods, 2002, 27, 114-120.	1.9	80
56	Transcription-targeted gene therapy for androgen-independent prostate cancer. Cancer Gene Therapy, 2002, 9, 443-452.	2.2	30
57	Hypermethylation of the Inhibin Â-Subunit Gene in Prostate Carcinoma. Molecular Endocrinology, 2002, 16, 213-220.	3.7	25
58	A Tissue-Specific Enhancer of the Prostate-Specific Membrane Antigen Gene, FOLH1. Genomics, 2001, 73, 243-254.	1.3	96
59	In vivo suicide gene therapy model using a newly discovered prostate-specific membrane antigen promoter/enhancer: a potential alternative approach to androgen deprivation therapy. Urology, 2001, 58, 132-139.	0.5	47
60	Gene therapy for endocrine tumors: strategies and progress. Current Opinion in Endocrinology, Diabetes and Obesity, 2001, 8, 35-40.	0.6	1
61	Electrophoretic Mobility Shift Assays. , 2000, 130, 235-246.		26
62	Prostate-specific suicide gene therapy using the prostate-specific membrane antigen promoter and enhancer. Prostate, 2000, 45, 149-157.	1.2	77
63	A Distinct Sequence (ATAAA) Separates Methylated and Unmethylated Domains at the 5′-End of theGSTP1 CpG Island*. Journal of Biological Chemistry, 2000, 275, 24893-24899.	1.6	76
64	High level, tissue-specific expression of a modified calcitonin/calcitonin gene-related peptide promoter in a human medullary thyroid carcinoma cell line. Molecular and Cellular Endocrinology, 2000, 164, 219-224.	1.6	21
65	Detailed methylation analysis of the glutathione S-transferase π (GSTP1) gene in prostate cancer. Oncogene, 1999, 18, 1313-1324.	2.6	211
66	Mapping, genomic organization and promoter analysis of the human prostate-specific membrane antigen gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1443, 113-127.	2.4	163
67	Relative activity and specificity of promoters from prostate-expressed genes., 1998, 35, 18-26.		50
68	<i>In Vivo</i> Gene Therapy for Prostate Cancer: Preclinical Evaluation of Two Different Enzyme-Directed Prodrug Therapy Systems Delivered by Identical Adenovirus Vectors. Human Gene Therapy, 1998, 9, 1617-1626.	1.4	84
69	Sp1 binding is inhibited by mCpmCpG methylation. Gene, 1997, 195, 67-71.	1.0	172
70	Base preferences for DNA binding by the bHLH-Zip protein USF: effects of MgCl2on specificity and comparison with binding of Myc family members. Nucleic Acids Research, 1994, 22, 2801-2810.	6.5	137
71	Direct Cloning of Polymerase Chain Reaction Products in an Xcml T-Vector. Analytical Biochemistry, 1994, 216, 235-236.	1.1	34
72	Broad binding-site specificity and affinity properties of octamer 1 and brain octamer-binding proteins. FEBS Journal, 1993, 217, 799-811.	0.2	35

#	Article	IF	CITATIONS
73	An engineered PGK promoter and lac operator-repressor system for the regulation of gene expression in mammalian cells. Gene, 1993, 130, 233-239.	1.0	20
74	Specific cleavage of transcription factors by the thiol protease, m-calpain. Nucleic Acids Research, 1993, 21, 5092-5100.	6.5	105
75	A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 1827-1831.	3.3	2,871
76	Binding of proteins from embryonic and differentiated cells to a bidirectional promoter contained within a CpG Island. Journal of Molecular Biology, 1992, 226, 289-299.	2.0	6
77	Characterization of the Human N-ras Promoter Region. , 1991, , 95-104.		8
78	DNA methylation and specific protein—DNA interactions. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1990, 326, 267-275.	2.4	20
79	Influence of the sequence-dependent flexure of DNA on transcription inE.coli. Nucleic Acids Research, 1989, 17, 9447-9468.	6.5	81
80	A marsupial phosphoglycerate kinase (PGK) processed pseudogene*1. Genomics, 1989, 5, 264-269.	1.3	12
81	Avian keratin genes I. A molecular analysis of the structure and expression of a group of feather keratin genes. Journal of Molecular Biology, 1989, 209, 549-559.	2.0	79
82	Stimulation of transcription from different RNA polymerase II promoters by high mobility group proteins 1 and 2. FEBS Letters, 1989, 242, 346-350.	1.3	11
83	Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter Genes and Development, 1988, 2, 1136-1143.	2.7	510
84	Effects of high mobility group proteins 1 and 2 on initiation and elongation of specific transcription by RNA polymerase Ilin vitro. Nucleic Acids Research, 1988 , 16 , $11107-11123$.	6.5	71
85	Effect of cytosine methylation on cutting by the restriction enzyme Maell. Nucleic Acids Research, 1988, 16, 2335-2335.	6.5	7
86	High mobility group proteins 1 and 2 stimulate binding of a specific transcription factor to the adenovirus major late promoter. Nucleic Acids Research, 1988, 16, 1471-1486.	6.5	100
87	Inhibition of SV40 replicon function by engineered antisense RNA transcribed by RNA polymerase III EMBO Journal, 1987, 6, 3043-3047.	3.5	35
88	Effects of DNA methylation on specific transcription by RNA polymerase II in vitro. Molecular Biology Reports, 1986, 11, 13-17.	1.0	7
89	Organisation of feather keratin genes in the chick genome. Nucleic Acids Research, 1982, 10, 6007-6021.	6.5	44
90	Cleavage of DNA.RNA hybrids by Type II restriction enzymes. Nucleic Acids Research, 1980, 8, 2939-2946.	6.5	45

PETER L MOLLOY

#	Article	IF	CITATIONS
91	Erythromycin resistance in mouse L cells. Somatic Cell Genetics, 1979, 5, 585-595.	2.7	10
92	Biogenesis of mitochondria. Journal of Molecular Biology, 1976, 104, 485-503.	2.0	48
93	Biogenesis of mitochondria: molecular mapping of the mitochondrial genome of yeast Proceedings of the National Academy of Sciences of the United States of America, 1976, 73, 2082-2085.	3.3	21
94	Biogenesis of mitochondria 44. Molecular Genetics and Genomics, 1976, 145, 43-52.	2.4	33
95	Relative retention of mitochondrial markers in petite mutants: mitochondrially determined differences between <i>RHO</i> (+) strains. Genetical Research, 1975, 26, 319-325.	0.3	6
96	Biogenesis of Mitochondria: Analysis of Deletion of Mitochondrial Antibiotic Resistance Markers in Petite Mutants of <i>Saccharomyces cerevisiae</i>). Journal of Bacteriology, 1975, 122, 7-18.	1.0	54
97	Biogenesis of mitochondria 34. Molecular Genetics and Genomics, 1974, 128, 43-54.	2.4	30
98	Studies on mitochondrial gene purification using petite mutants of yeast: Characterization of mutants enriched in ribosomal RNA cistrons. Biochemical and Biophysical Research Communications, 1974, 57, 232-239.	1.0	32
99	Mitochondrial mutants of the yeast Saccharomyces cerevisiae showing resistance in vitro to chloramphenicol inhibition of mitochondrial protein synthesis. Biochemical and Biophysical Research Communications, 1973, 52, 9-14.	1.0	22