
Joshua H Lipschutz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6122290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conditional Loss of the Exocyst Component Exoc5 in Retinal Pigment Epithelium (RPE) Results in RPE Dysfunction, Photoreceptor Cell Degeneration, and Decreased Visual Function. International Journal of Molecular Sciences, 2021, 22, 5083.	4.1	2
2	Phosphorylation of slit diaphragm proteins NEPHRIN and NEPH1 upon binding of HGF promotes podocyte repair. Journal of Biological Chemistry, 2021, 297, 101079.	3.4	4
3	Hydrogen sulfide, a gaseous signaling molecule, elongates primary cilia on kidney tubular epithelial cells by activating extracellular signal-regulated kinase. Korean Journal of Physiology and Pharmacology, 2021, 25, 593-601.	1.2	1
4	The Use of High-Throughput Transcriptomics to Identify Pathways with Therapeutic Significance in Podocytes. International Journal of Molecular Sciences, 2020, 21, 274.	4.1	7
5	A Functional Binding Domain in the Rbpr2 Receptor Is Required for Vitamin A Transport, Ocular Retinoid Homeostasis, and Photoreceptor Cell Survival in Zebrafish. Cells, 2020, 9, 1099.	4.1	9
6	Desert hedgehog-primary cilia cross talk shapes mitral valve tissue by organizing smooth muscle actin. Developmental Biology, 2020, 463, 26-38.	2.0	9
7	Defects in the Exocyst-Cilia Machinery Cause Bicuspid Aortic Valve Disease and Aortic Stenosis. Circulation, 2019, 140, 1331-1341.	1.6	40
8	Primary cilia and the exocyst are linked to urinary extracellular vesicle production and content. Journal of Biological Chemistry, 2019, 294, 19099-19110.	3.4	18
9	Primary cilia defects causing mitral valve prolapse. Science Translational Medicine, 2019, 11, .	12.4	76
10	Disruption of the exocyst induces podocyte loss and dysfunction. Journal of Biological Chemistry, 2019, 294, 10104-10119.	3.4	17
11	The motor protein Myo1c regulates transforming growth factor-β–signaling and fibrosis in podocytes. Kidney International, 2019, 96, 139-158.	5.2	20
12	The exocyst acting through the primary cilium is necessary for renal ciliogenesis, cystogenesis, and tubulogenesis. Journal of Biological Chemistry, 2019, 294, 6710-6718.	3.4	17
13	The role of the exocyst in renal ciliogenesis, cystogenesis, tubulogenesis, and development. Kidney Research and Clinical Practice, 2019, 38, 260-266.	2.2	9
14	Exocyst Complex Member EXOC5 Is Required for Survival of Hair Cells and Spiral Ganglion Neurons and Maintenance of Hearing. Molecular Neurobiology, 2018, 55, 6518-6532.	4.0	9
15	The Retinol-Binding Protein Receptor 2 (Rbpr2) Is Required for Photoreceptor Survival and Visual Function in the Zebrafish. Advances in Experimental Medicine and Biology, 2018, 1074, 569-576.	1.6	7
16	A role for primary cilia in aortic valve development and disease. Developmental Dynamics, 2017, 246, 625-634.	1.8	53
17	Targeting Neph1 and ZO-1 protein-protein interaction in podocytes prevents podocyte injury and preserves glomerular filtration function. Scientific Reports, 2017, 7, 12047.	3.3	19
18	The exocyst is required for photoreceptor ciliogenesis and retinal development. Journal of Biological Chemistry, 2017, 292, 14814-14826.	3.4	40

Јозниа Н Цірѕснитг

#	Article	IF	CITATIONS
19	Zebrafish as models to study ciliopathies of the eye and kidney. , 2017, 1, 6-9.		5
20	Unilateral nephrectomy elongates primary cilia in the remaining kidney via reactive oxygen species. Scientific Reports, 2016, 6, 22281.	3.3	29
21	Adaptor Protein CD2AP and L-type Lectin LMAN2 Regulate Exosome Cargo Protein Trafficking through the Golgi Complex. Journal of Biological Chemistry, 2016, 291, 25462-25475.	3.4	33
22	Dynamin Binding Protein (Tuba) Deficiency Inhibits Ciliogenesis and Nephrogenesis in Vitro and in Vivo. Journal of Biological Chemistry, 2016, 291, 8632-8643.	3.4	20
23	Arl13b and the exocyst interact synergistically in ciliogenesis. Molecular Biology of the Cell, 2016, 27, 308-320.	2.1	66
24	A Post-Developmental Genetic Screen for Zebrafish Models of Inherited Liver Disease. PLoS ONE, 2015, 10, e0125980.	2.5	30
25	Urothelial Defects from Targeted Inactivation of Exocyst Sec10 in Mice Cause Ureteropelvic Junction Obstructions. PLoS ONE, 2015, 10, e0129346.	2.5	32
26	Cdc42andsec10Are Required for Normal Retinal Development in Zebrafish. , 2015, 56, 3361.		16
27	Total Kidney Volume in Autosomal Dominant Polycystic KidneyÂDisease: A Biomarker of Disease Progression and Therapeutic Efficacy. American Journal of Kidney Diseases, 2015, 66, 564-576.	1.9	51
28	A Novel Transgenic Mouse Model for Congenital Obstructive Nephropathy. FASEB Journal, 2015, 29, 663.16.	0.5	1
29	Exocyst Sec10 protects renal tubule cells from injury by EGFR/MAPK activation and effects on endocytosis. American Journal of Physiology - Renal Physiology, 2014, 307, F1334-F1341.	2.7	18
30	The exocyst and regulatory GTPases in urinary exosomes. Physiological Reports, 2014, 2, e12116.	1.7	26
31	Expression of Drosophila forkhead transcription factors during kidney development. Biochemical and Biophysical Research Communications, 2014, 446, 15-17.	2.1	1
32	A Possible Zebrafish Model of Polycystic Kidney Disease: Knockdown of wnt5a Causes Cysts in Zebrafish Kidneys. Journal of Visualized Experiments, 2014, , .	0.3	11
33	Activation of ERK accelerates repair of renal tubular epithelial cells, whereas it inhibits progression of fibrosis following ischemia/reperfusion injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1998-2008.	3.8	54
34	Cdc42 Deficiency Causes Ciliary Abnormalities and Cystic Kidneys. Journal of the American Society of Nephrology: JASN, 2013, 24, 1435-1450.	6.1	65
35	The Small GTPase Cdc42 Is Necessary for Primary Ciliogenesis in Renal Tubular Epithelial Cells. Journal of Biological Chemistry, 2011, 286, 22469-22477.	3.4	64
36	Exocyst Sec10 protects epithelial barrier integrity and enhances recovery following oxidative stress, by activation of the MAPK pathway. American Journal of Physiology - Renal Physiology, 2010, 298, F818-F826.	2.7	21

Joshua H Lipschutz

#	Article	IF	CITATIONS
37	The Exocyst Protein Sec10 Is Necessary for Primary Ciliogenesis and Cystogenesis In Vitro. Molecular Biology of the Cell, 2009, 20, 2522-2529.	2.1	154
38	ERK and MMPs Sequentially Regulate Distinct Stages of Epithelial Tubule Development. Developmental Cell, 2004, 7, 21-32.	7.0	142
39	The exocyst localizes to the primary cilium in MDCK cells. Biochemical and Biophysical Research Communications, 2004, 319, 138-143.	2.1	83
40	The Exocyst Affects Protein Synthesis by Acting on the Translocation Machinery of the Endoplasmic Reticulum. Journal of Biological Chemistry, 2003, 278, 20954-20960.	3.4	81
41	Recent Advances in the Cell Biology of Polycystic Kidney Disease. International Review of Cytology, 2003, 231, 51-89.	6.2	12
42	Exocytosis: The Many Masters of the Exocyst. Current Biology, 2002, 12, R212-R214.	3.9	204
43	Cdc42 Interacts with the Exocyst and Regulates Polarized Secretion. Journal of Biological Chemistry, 2001, 276, 46745-46750.	3.4	272
44	Exocyst Is Involved in Cystogenesis and Tubulogenesis and Acts by Modulating Synthesis and Delivery of Basolateral Plasma Membrane and Secretory Proteins. Molecular Biology of the Cell, 2000, 11, 4259-4275.	2.1	138