List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6122262/publications.pdf Version: 2024-02-01

Ιι Ηνιίνι Υοιικ

#	Article	IF	CITATIONS
1	Triple-negative invasive breast cancer on dynamic contrast-enhanced and diffusion-weighted MR imaging: comparison with other breast cancer subtypes. European Radiology, 2012, 22, 1724-1734.	4.5	190
2	Missed Breast Cancers at US-guided Core Needle Biopsy: How to Reduce Them. Radiographics, 2007, 27, 79-94.	3.3	160
3	Observer variability of Breast Imaging Reporting and Data System (BI-RADS) for breast ultrasound. European Journal of Radiology, 2008, 65, 293-298.	2.6	144
4	Shear-wave elastography in breast ultrasonography: the state of the art. Ultrasonography, 2017, 36, 300-309.	2.3	121
5	Sonographically Guided 14-Gauge Core Needle Biopsy of Breast Masses: A Review of 2,420 Cases with Long-Term Follow-Up. American Journal of Roentgenology, 2008, 190, 202-207.	2.2	115
6	Shear wave elastography of thyroid nodules for the prediction of malignancy in a large scale study. European Journal of Radiology, 2015, 84, 407-412.	2.6	105
7	Benign Papilloma without Atypia Diagnosed at US-guided 14-gauge Core-Needle Biopsy: Clinical and US Features Predictive of Upgrade to Malignancy. Radiology, 2011, 258, 81-88.	7.3	88
8	Diagnostic value of commercially available shear-wave elastography for breast cancers: integration into BI-RADS classification with subcategories of category 4. European Radiology, 2013, 23, 2695-2704.	4.5	86
9	Comparison of Strain and Shear Wave Elastography for the Differentiation of Benign From Malignant Breast Lesions, Combined With B-mode Ultrasonography: Qualitative and Quantitative Assessments. Ultrasound in Medicine and Biology, 2014, 40, 2336-2344.	1.5	85
10	Shear-wave elastography of invasive breast cancer: correlation between quantitative mean elasticity value and immunohistochemical profile. Breast Cancer Research and Treatment, 2013, 138, 119-126.	2.5	80
11	Practice guideline for the performance of breast ultrasound elastography. Ultrasonography, 2014, 33, 3-10.	2.3	79
12	Texture Analysis with 3.0-T MRI for Association of Response to Neoadjuvant Chemotherapy in Breast Cancer. Radiology, 2020, 294, 31-41.	7.3	75
13	Visually assessed colour overlay features in shear-wave elastography for breast masses: quantification and diagnostic performance. European Radiology, 2013, 23, 658-663.	4.5	61
14	Automated Volumetric Breast Density Measurements in the Era of the BI-RADS Fifth Edition: A Comparison With Visual Assessment. American Journal of Roentgenology, 2016, 206, 1056-1062.	2.2	56
15	Analysis of false-negative results after US-guided 14-gauge core needle breast biopsy. European Radiology, 2010, 20, 782-789.	4.5	52
16	Evaluation of Screening US–detected Breast Masses by Combined Use of Elastography and Color Doppler US with B-Mode US in Women with Dense Breasts: A Multicenter Prospective Study. Radiology, 2017, 285, 660-669.	7.3	52
17	Shear-wave elastography for breast masses: local shear wave speed (m/s) versus Young modulus (kPa). Ultrasonography, 2014, 33, 34-39.	2.3	51
18	Three-dimensional shear-wave elastography for differentiating benign and malignant breast lesions: comparison with two-dimensional shear-wave elastography. European Radiology, 2013, 23, 1519-1527.	4.5	50

#	Article	IF	CITATIONS
19	Role of diffusion-weighted MRI: predicting axillary lymph node metastases in breast cancer. Acta Radiologica, 2014, 55, 909-916.	1.1	43
20	Magnetic Resonance Metabolic Profiling of Breast Cancer Tissue Obtained with Core Needle Biopsy for Predicting Pathologic Response to Neoadjuvant Chemotherapy. PLoS ONE, 2013, 8, e83866.	2.5	40
21	Ductal carcinoma in situ diagnosed at US-guided 14-gauge core-needle biopsy for breast mass: Preoperative predictors of invasive breast cancer. European Journal of Radiology, 2014, 83, 654-659.	2.6	40
22	US-Guided Vacuum-Assisted Percutaneous Excision for Management of Benign Papilloma Without Atypia Diagnosed at US-Guided 14-Gauge Core Needle Biopsy. Annals of Surgical Oncology, 2012, 19, 922-928.	1.5	39
23	Atypical Ductal Hyperplasia Diagnosed at Sonographically Guided 14-Gauge Core Needle Biopsy of Breast Mass. American Journal of Roentgenology, 2009, 192, 1135-1141.	2.2	37
24	Preoperative prediction of the extrathyroidal extension of papillary thyroid carcinoma with ultrasonography versus MRI: A retrospective cohort study. International Journal of Surgery, 2014, 12, 544-548.	2.7	37
25	Radiomics signature for prediction of lateral lymph node metastasis in conventional papillary thyroid carcinoma. PLoS ONE, 2020, 15, e0227315.	2.5	37
26	Clinical application of qualitative assessment for breast masses in shear-wave elastography. European Journal of Radiology, 2013, 82, e680-e685.	2.6	36
27	Pre-Operative Evaluation of Axillary Lymph Node Status in Patients with Suspected Breast Cancer Using Shear Wave Elastography. Ultrasound in Medicine and Biology, 2017, 43, 1581-1586.	1.5	36
28	Dynamic contrastâ€enhanced and diffusionâ€weighted MRI of invasive breast cancer for the prediction of sentinel lymph node status. Journal of Magnetic Resonance Imaging, 2020, 51, 615-626.	3.4	33
29	Performance of hand-held whole-breast ultrasound based on BI-RADS in women with mammographically negative dense breast. European Radiology, 2011, 21, 667-675.	4.5	30
30	Better Understanding in the Differentiation of Thyroid Follicular Adenoma, Follicular Carcinoma, and Follicular Variant of Papillary Carcinoma: A Retrospective Study. International Journal of Endocrinology, 2014, 2014, 1-9.	1.5	30
31	Comparison of the diagnostic performances of ultrasonography, CT and fine needle aspiration cytology for the prediction of lymph node metastasis in patients with lymph node dissection of papillary thyroid carcinoma: A retrospective cohort study. International Journal of Surgery, 2018, 51, 145150	2.7	30
32	Concordant or Discordant? Imaging-Pathology Correlation in a Sonography-Guided Core Needle Biopsy of a Breast Lesion. Korean Journal of Radiology, 2011, 12, 232.	3.4	28
33	Evaluation of an automated breast volume scanner according to the fifth edition of BI-RADS for breast ultrasound compared with hand-held ultrasound. European Journal of Radiology, 2018, 99, 138-145.	2.6	28
34	Shear-Wave Elastography for Papillary Thyroid Carcinoma can Improve Prediction of Cervical Lymph Node Metastasis. Annals of Surgical Oncology, 2016, 23, 722-729.	1.5	24
35	Comparison of Visual Assessment of Breast Density in BI-RADS 4th and 5th Editions With Automated Volumetric Measurement. American Journal of Roentgenology, 2017, 209, 703-708.	2.2	24
36	Atypical Papilloma Diagnosed by Sonographically Guided 14-Gauge Core Needle Biopsy of Breast Mass. American Journal of Roentgenology, 2010, 194, 1397-1402.	2.2	23

#	Article	IF	CITATIONS
37	Identification of Preoperative Magnetic Resonance Imaging Features Associated with Positive Resection Margins in Breast Cancer: A Retrospective Study. Korean Journal of Radiology, 2018, 19, 897.	3.4	21
38	Grayscale Ultrasound Radiomic Features and Shear-Wave Elastography Radiomic Features in Benign and Malignant Breast Masses. Ultraschall in Der Medizin, 2020, 41, 390-396.	1.5	21
39	Application of machine learning to ultrasound images to differentiate follicular neoplasms of the thyroid gland. Ultrasonography, 2020, 39, 257-265.	2.3	21
40	Supplementary Screening Sonography in Mammographically Dense Breast: Pros and Cons. Korean Journal of Radiology, 2010, 11, 589.	3.4	20
41	Prediction of axillary response by monitoring with ultrasound and MRI during and after neoadjuvant chemotherapy in breast cancer patients. European Radiology, 2020, 30, 1460-1469.	4.5	20
42	Photoacoustic Imaging of Breast Microcalcifications: A Preliminary Study with 8-Gauge Core-Biopsied Breast Specimens. PLoS ONE, 2014, 9, e105878.	2.5	20
43	Associations of the BRAFV600E Mutation with Sonographic Features and Clinicopathologic Characteristics in a Large Population with Conventional Papillary Thyroid Carcinoma. PLoS ONE, 2014, 9, e110868.	2.5	20
44	US follow-up protocol in concordant benign result after US-guided 14-gauge core needle breast biopsy. Breast Cancer Research and Treatment, 2012, 132, 1089-1097.	2.5	19
45	<i>Ex Vivo</i> Shear-Wave Elastography of Axillary Lymph Nodes to Predict Nodal Metastasis in Patients with Primary Breast Cancer. Journal of Breast Cancer, 2018, 21, 190.	1.9	19
46	Repeat Diagnoses of Bethesda Category III Thyroid Nodules: What To Do Next?. PLoS ONE, 2015, 10, e0130138.	2.5	18
47	Comparison of Inter-Observer Variability and Diagnostic Performance of the Fifth Edition of BI-RADS for Breast Ultrasound of Static versus Video Images. Ultrasound in Medicine and Biology, 2016, 42, 2083-2088.	1.5	18
48	Recurrence of Adenoid Cystic Carcinoma in the Breast After Lumpectomy and Adjuvant Therapy. Journal of Ultrasound in Medicine, 2006, 25, 921-924.	1.7	17
49	Phyllodes Tumor Diagnosed after Ultrasound-Guided Vacuum-Assisted Excision: Should It Be Followed by Surgical Excision?. Ultrasound in Medicine and Biology, 2015, 41, 741-747.	1.5	17
50	Thyroid nodules with nondiagnostic results on repeat fine-needle aspiration biopsy: which nodules should be considered for repeat biopsy or surgery rather than follow-up?. Ultrasonography, 2016, 35, 234-243.	2.3	17
51	Diagnostic performance of qualitative shear-wave elastography according to different color map opacities for breast masses. European Journal of Radiology, 2013, 82, e326-e331.	2.6	14
52	A nomogram constructed using intraoperative ex vivo shear-wave elastography precisely predicts metastasis of sentinel lymph nodes in breast cancer. European Radiology, 2020, 30, 789-797.	4.5	14
53	The clinical significance of accompanying NME on preoperative MR imaging in breast cancer patients. PLoS ONE, 2017, 12, e0178445.	2.5	14
54	Scoring System Based on BI-RADS Lexicon to Predict Probability of Malignancy in Suspicious Microcalcifications. Annals of Surgical Oncology, 2012, 19, 1491-1498.	1.5	13

#	Article	IF	CITATIONS
55	Quantitative Lesion-to-Fat Elasticity Ratio Measured by Shear-Wave Elastography for Breast Mass: Which Area Should Be Selected as the Fat Reference?. PLoS ONE, 2015, 10, e0138074.	2.5	13
56	Lymphangiogenesis in Breast Cancer Correlates with Matrix Stiffness on Shear-Wave Elastography. Yonsei Medical Journal, 2016, 57, 599.	2.2	13
57	Predictive Factors for Active Surveillance of Subcentimeter Thyroid Nodules with Highly Suspicious US Features. Annals of Surgical Oncology, 2017, 24, 1540-1545.	1.5	13
58	Performance of shear-wave elastography for breast masses using different region-of-interest (ROI) settings. Acta Radiologica, 2018, 59, 789-797.	1.1	13
59	Validation of the fifth edition BI-RADS ultrasound lexicon with comparison of fourth and fifth edition diagnostic performance using video clips. Ultrasonography, 2016, 35, 318-326.	2.3	12
60	A convolutional deep learning model for improving mammographic breast-microcalcification diagnosis. Scientific Reports, 2021, 11, 23925.	3.3	12
61	Texture analysis using machine learning–based 3-T magnetic resonance imaging for predicting recurrence in breast cancer patients treated with neoadjuvant chemotherapy. European Radiology, 2021, 31, 6916-6928.	4.5	11
62	Depiction of breast cancers on digital mammograms by artificial intelligence-based computer-assisted diagnosis according to cancer characteristics. European Radiology, 2022, 32, 7400-7408.	4.5	10
63	Can galectinâ€3 be a useful marker for conventional papillary thyroid microcarcinoma?. Diagnostic Cytopathology, 2016, 44, 103-107.	1.0	9
64	Effect of training on ultrasonography (US) BI-RADS features for radiology residents: a multicenter study comparing performances after training. European Radiology, 2019, 29, 4468-4476.	4.5	8
65	Short-term follow-up in 6Âmonths is unnecessary for asymptomatic breast lesions with benign concordant results obtained at ultrasonography-guided 14-gauge core needle biopsy. American Journal of Surgery, 2016, 211, 152-158.	1.8	7
66	Metastatic Breast Lesion From Thymic Carcinoma. Journal of Ultrasound in Medicine, 2006, 25, 1339-1342.	1.7	6
67	Prognostic role of the Bethesda System for conventional papillary thyroid carcinoma. Head and Neck, 2016, 38, 1509-1514.	2.0	6
68	Scoring System to Stratify Malignancy Risks for Mammographic Microcalcifications Based on Breast Imaging Reporting and Data System 5th Edition Descriptors. Korean Journal of Radiology, 2019, 20, 1646.	3.4	6
69	Clinical Imaging of Glycogen-rich Clear Cell Carcinoma of the Breast: A Case Series with Literature Review. Magnetic Resonance in Medical Sciences, 2019, 18, 238-242.	2.0	5
70	Lesion stiffness measured by shear-wave elastography: Preoperative predictor of the histologic underestimation of US-guided core needle breast biopsy. European Journal of Radiology, 2015, 84, 2509-2514.	2.6	3
71	Necessity of Axillary Scanning After Negative Finding on Both Mammography and Subsequent Breast Ultrasound. Ultrasound in Medicine and Biology, 2018, 44, 71-77.	1.5	3
72	Outcomes of Ductal Carcinoma In Situ According to Detection Modality: A Multicenter Study Comparing Recurrence Between Mammography and Breast US. Ultrasound in Medicine and Biology, 2019, 45, 2623-2633.	1.5	3

#	Article	IF	CITATIONS
73	Fully automated measurements of volumetric breast density adapted for BIRADS 5th edition: a comparison with visual assessment. Acta Radiologica, 2020, 62, 028418512095630.	1.1	3
74	Added value of abbreviated breast magnetic resonance imaging for assessing suspicious microcalcification on screening mammography—a prospective study. European Radiology, 2022, 32, 815-821.	4.5	3
75	Localized Metastasis to Small and Large Bowel from Breast Cancer: A Case Report. Journal of the Korean Society of Radiology, 2010, 62, 551.	0.2	3
76	Preoperative Nodal US Features for Predicting Recurrence in N1b Papillary Thyroid Carcinoma. Cancers, 2022, 14, 174.	3.7	3
77	Can Biannual Ultrasound Surveillance Detect Smaller Second Cancers or Detect Cancers Earlier in Patients with Breast Cancer History?. Ultrasound in Medicine and Biology, 2018, 44, 1355-1363.	1.5	2
78	Research Highlight: Artificial Intelligence for Ruling Out Negative Examinations in Screening Breast MRI. Korean Journal of Radiology, 2022, 23, 153.	3.4	2
79	Metastasis of Breast Carcinoma to Intercostal Muscle Detected by Breast MRI: A Case Report. Journal of the Korean Society of Radiology, 2010, 63, 391.	0.2	1
80	Local Recurrence of Secondary Hemangiosarcoma Following Breast Radiation Therapy: A Case Report. Journal of the Korean Society of Radiology, 2010, 63, 565.	0.2	0
81	Abdominal Wall Metastasis from an Invasive Lobular Carcinoma of the Breast: A Case Report. Journal of the Korean Society of Radiology, 2011, 64, 611.	0.2	0
82	Factors Influencing the Background Parenchymal Enhancement in Follow-Up Breast MRI after Adjuvant Endocrine Therapy. Investigative Magnetic Resonance Imaging, 2015, 19, 99.	0.4	0