
Emmanuel Planel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/61222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6990-6995.	7.1	649
2	Anesthesia Leads to Tau Hyperphosphorylation through Inhibition of Phosphatase Activity by Hypothermia. Journal of Neuroscience, 2007, 27, 3090-3097.	3.6	347
3	Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Human Molecular Genetics, 2010, 19, 3959-3969.	2.9	285
4	Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13896-13901.	7.1	254
5	Alterations in Glucose Metabolism Induce Hypothermia Leading to Tau Hyperphosphorylation through Differential Inhibition of Kinase and Phosphatase Activities: Implications for Alzheimer's Disease. Journal of Neuroscience, 2004, 24, 2401-2411.	3.6	242
6	Retromer deficiency observed in Alzheimer's disease causes hippocampal dysfunction, neurodegeneration, and Aβ accumulation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7327-7332.	7.1	230
7	Insulin Dysfunction Induces <i>In Vivo</i> Tau Hyperphosphorylation through Distinct Mechanisms. Journal of Neuroscience, 2007, 27, 13635-13648.	3.6	227
8	A Neuronal Microtubule-Interacting Agent, NAPVSIPQ, Reduces Tau Pathology and Enhances Cognitive Function in a Mouse Model of Alzheimer's Disease. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 146-153.	2.5	214
9	Insulin Reverses the High-Fat Diet–Induced Increase in Brain Aβ and Improves Memory in an Animal Model of Alzheimer Disease. Diabetes, 2014, 63, 4291-4301.	0.6	197
10	Transcriptional Regulation of β-Secretase by p25/cdk5 Leads to Enhanced Amyloidogenic Processing. Neuron, 2008, 57, 680-690.	8.1	191
11	Inhibition of Protein Phosphatase 2A Overrides Tau Protein Kinase I/Glycogen Synthase Kinase 3β and Cyclin-dependent Kinase 5 Inhibition and Results in Tau Hyperphosphorylation in the Hippocampus of Starved Mouse. Journal of Biological Chemistry, 2001, 276, 34298-34306.	3.4	183
12	miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation <i>in vivo</i> . Human Molecular Genetics, 2015, 24, 6721-6735.	2.9	177
13	Metabolic Activity Determines Efficacy of Macroautophagic Clearance of Pathological Oligomeric α-Synuclein. American Journal of Pathology, 2009, 175, 736-747.	3.8	144
14	MicroRNA-132 loss is associated with tau exon 10 inclusion in progressive supranuclear palsy. Human Molecular Genetics, 2011, 20, 4016-4024.	2.9	136
15	Interplay between Cyclin-Dependent Kinase 5 and Glycogen Synthase Kinase 3Î ² Mediated by Neuregulin Signaling Leads to Differential Effects on Tau Phosphorylation and Amyloid Precursor Protein Processing. Journal of Neuroscience, 2008, 28, 2624-2632.	3.6	134
16	Acceleration and persistence of neurofibrillary pathology in a mouse model of tauopathy following anesthesia. FASEB Journal, 2009, 23, 2595-2604.	0.5	130
17	Propofol Directly Increases Tau Phosphorylation. PLoS ONE, 2011, 6, e16648.	2.5	122
18	Aberrant Tau Phosphorylation by Glycogen Synthase Kinase-3β and JNK3 Induces Oligomeric Tau Fibrils in COS-7 Cells. Journal of Biological Chemistry, 2002, 277, 42060-42065.	3.4	119

EMMANUEL PLANEL

#	Article	IF	CITATIONS
19	Cognitive and non-cognitive behaviors in the triple transgenic mouse model of Alzheimer's disease expressing mutated APP, PS1, and Mapt (3xTg-AD). Behavioural Brain Research, 2012, 234, 334-342.	2.2	118
20	Uâ€box protein carboxyl terminus of Hsc70â€interacting protein (CHIP) mediates polyâ€ubiquitylation preferentially on fourâ€repeat Tau and is involved in neurodegeneration of tauopathy. Journal of Neurochemistry, 2004, 91, 299-307.	3.9	116
21	Starvation induces tau hyperphosphorylation in mouse brain: implications for Alzheimer's disease. FEBS Letters, 1999, 461, 329-333.	2.8	114
22	Consensus Statement: First International Workshop on Anesthetics and Alzheimer's Disease. Anesthesia and Analgesia, 2009, 108, 1627-1630.	2.2	112
23	Specificity of Anti-Tau Antibodies when Analyzing Mice Models of Alzheimer's Disease: Problems and Solutions. PLoS ONE, 2014, 9, e94251.	2.5	102
24	microRNA-132/212 deficiency enhances Aβ production and senile plaque deposition in Alzheimer's disease triple transgenic mice. Scientific Reports, 2016, 6, 30953.	3.3	101
25	Insulin dysfunction and Tau pathology. Frontiers in Cellular Neuroscience, 2014, 8, 22.	3.7	95
26	A transgenic rat that develops Alzheimer's disease-like amyloid pathology, deficits in synaptic plasticity and cognitive impairment. Neurobiology of Disease, 2008, 31, 46-57.	4.4	92
27	Anesthesia and tau pathology. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 47, 147-155.	4.8	88
28	Ageâ€dependent impairment of glucose tolerance in the 3xTgâ€AD mouse model of Alzheimer's disease. FASEB Journal, 2015, 29, 4273-4284.	0.5	84
29	Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head Trauma. American Journal of Pathology, 2016, 186, 552-567.	3.8	84
30	Anesthesia-Induced Hyperphosphorylation Detaches 3-Repeat Tau from Microtubules without Affecting Their Stability <i>In Vivo</i> . Journal of Neuroscience, 2008, 28, 12798-12807.	3.6	83
31	Tau Aggregates: Toxic, Inert, or Protective Species?. Journal of Alzheimer's Disease, 2008, 14, 431-436.	2.6	82
32	Role of GSK-3? in Alzheimer's disease pathology. Drug Development Research, 2002, 56, 491-510.	2.9	77
33	Starvation and inhibition of lysosomal function increased tau secretion by primary cortical neurons. Scientific Reports, 2014, 4, 5715.	3.3	77
34	Memory formation and retention are affected in adult miR-132/212 knockout mice. Behavioural Brain Research, 2015, 287, 15-26.	2.2	75
35	Impaired Resolution of Inflammation in Alzheimer's Disease: A Review. Frontiers in Immunology, 2017, 8, 1464.	4.8	68
36	Is Huntington's disease a tauopathy?. Brain, 2016, 139, 1014-1025.	7.6	64

Emmanuel Planel

#	Article	IF	CITATIONS
37	Hypothermia-induced hyperphosphorylation: a new model to study tau kinase inhibitors. Scientific Reports, 2012, 2, 480.	3.3	63
38	Co-occurrence of mixed proteinopathies in late-stage Huntington's disease. Acta Neuropathologica, 2018, 135, 249-265.	7.7	60
39	Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer's disease-like tau pathology. Scientific Reports, 2017, 7, 46359.	3.3	58
40	Deregulation of Protein Phosphatase 2A and Hyperphosphorylation of Ï,, Protein Following Onset of Diabetes in NOD Mice. Diabetes, 2013, 62, 609-617.	0.6	57
41	Alzheimer's Disease and Anesthesia. Frontiers in Neuroscience, 2011, 4, 272.	2.8	56
42	Tau hyperphosphorylation and deregulation of calcineurin in mouse models of Huntington's disease. Human Molecular Genetics, 2015, 24, 86-99.	2.9	56
43	In Vivo Turnover of Tau and APP Metabolites in the Brains of Wild-Type and Tg2576 Mice: Greater Stability of sAPP in the β-Amyloid Depositing Mice. PLoS ONE, 2009, 4, e7134.	2.5	53
44	Presence of tau pathology within foetal neural allografts in patients with Huntington's and Parkinson's disease. Brain, 2017, 140, 2982-2992.	7.6	51
45	Impaired thermoregulation and beneficial effects of thermoneutrality in the 3×Tg-AD model of Alzheimer's disease. Neurobiology of Aging, 2016, 43, 47-57.	3.1	48
46	Untangling memory deficits. Nature Medicine, 2005, 11, 826-827.	30.7	42
47	Arterial Stiffness Due to Carotid Calcification Disrupts Cerebral Blood Flow Regulation and Leads to Cognitive Deficits. Journal of the American Heart Association, 2019, 8, e011630.	3.7	38
48	Hypothermia mediates age-dependent increase of tau phosphorylation in db/db mice. Neurobiology of Disease, 2016, 88, 55-65.	4.4	36
49	Tau hyperphosphorylation in the brain of ob/ob mice is due to hypothermia: Importance of thermoregulation in linking diabetes and Alzheimer's disease. Neurobiology of Disease, 2017, 98, 1-8.	4.4	34
50	câ€jun Nâ€ŧerminal kinase hyperphosphorylates R406W tau at the PHFâ€1 site during mitosis. FASEB Journal, 2006, 20, 762-764.	0.5	33
51	Biochemical Isolation of Insoluble Tau in Transgenic Mouse Models of Tauopathies. Methods in Molecular Biology, 2012, 849, 473-491.	0.9	33
52	Dexmedetomidine increases tau phosphorylation under normothermic conditions inÂvivo and inÂvitro. Neurobiology of Aging, 2015, 36, 2414-2428.	3.1	29
53	Old age potentiates cold-induced tau phosphorylation: linking thermoregulatory deficit with Alzheimer's disease. Neurobiology of Aging, 2017, 50, 25-29.	3.1	29
54	Anesthesia-induced hypothermia mediates decreased ARC gene and protein expression through ERK/MAPK inactivation. Scientific Reports, 2013, 3, 1388.	3.3	28

Emmanuel Planel

#	Article	IF	CITATIONS
55	Dimethyl Sulfoxide Induces Both Direct and Indirect Tau Hyperphosphorylation. PLoS ONE, 2012, 7, e40020.	2.5	28
56	High-fat, high-sugar, and high-cholesterol consumption does not impact tau pathogenesis in a mouse model of Alzheimer's disease-like tau pathology. Neurobiology of Aging, 2016, 47, 71-73.	3.1	26
57	Repeated cold exposures protect a mouse model of Alzheimer's disease against cold-induced tau phosphorylation. Molecular Metabolism, 2019, 22, 110-120.	6.5	24
58	Differential effects of voluntary treadmill exercise and caloric restriction on tau pathogenesis in a mouse model of Alzheimer's disease-like tau pathology fed with Western diet. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 79, 452-461.	4.8	23
59	Gene Network and Pathway Analysis of Mice with Conditional Ablation of Dicer in Post-Mitotic Neurons. PLoS ONE, 2012, 7, e44060.	2.5	22
60	Administration of the benzodiazepine midazolam increases tau phosphorylation in the mouse brain. Neurobiology of Aging, 2019, 75, 11-24.	3.1	21
61	ERK (MAPK) does not phosphorylate tau under physiological conditions inÂvivo or inÂvitro. Neurobiology of Aging, 2015, 36, 901-902.	3.1	19
62	Circadian and sleep/wake-dependent variations in tau phosphorylation are driven by temperature. Sleep, 2020, 43, .	1.1	19
63	Seizure activity triggers tau hyperphosphorylation and amyloidogenic pathways. Epilepsia, 2022, 63, 919-935.	5.1	19
64	Metabolic determinants of Alzheimer's disease: A focus on thermoregulation. Ageing Research Reviews, 2021, 72, 101462.	10.9	18
65	Repurposing beta-3 adrenergic receptor agonists for Alzheimer's disease: beneficial effects in a mouse model. Alzheimer's Research and Therapy, 2021, 13, 103.	6.2	17
66	MicroRNA-138 Overexpression Alters $A\hat{l}^2$ 42 Levels and Behavior in Wildtype Mice. Frontiers in Neuroscience, 2020, 14, 591138.	2.8	16
67	Human Tau Expression Does Not Induce Mouse Retina Neurodegeneration, Suggesting Differential Toxicity of Tau in Brain vs. Retinal Neurons. Frontiers in Molecular Neuroscience, 2018, 11, 293.	2.9	15
68	Postoperative Cognitive Decline. Anesthesiology, 2012, 116, 751-752.	2.5	14
69	Passive immunization against phosphorylated tau improves features of Huntington's disease pathology. Molecular Therapy, 2022, 30, 1500-1522.	8.2	11
70	Regulation of brain insulin signaling: A new function for tau. Journal of Experimental Medicine, 2017, 214, 2171-2173.	8.5	9
71	Intranasal Administration of Nanovectorized Docosahexaenoic Acid (DHA) Improves Cognitive Function in Two Complementary Mouse Models of Alzheimer's Disease. Antioxidants, 2022, 11, 838.	5.1	9
72	A Simple Method to Avoid Nonspecific Signal When Using Monoclonal Anti-Tau Antibodies in Western Blotting of Mouse Brain Proteins. Methods in Molecular Biology, 2017, 1523, 263-272.	0.9	7

EMMANUEL PLANEL

#	Article	IF	CITATIONS
73	The toxin MPTP generates similar cognitive and locomotor deficits in hTau and tau knock-out mice. Brain Research, 2019, 1711, 106-114.	2.2	7
74	Sauna-like conditions or menthol treatment reduce tau phosphorylation through mild hyperthermia. Neurobiology of Aging, 2022, 113, 118-130.	3.1	7
75	Anesthesia, surgery and neurodegeneration. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 47, 121.	4.8	5
76	Advances and Challenges in Understanding MicroRNA Function in Tauopathies: A Case Study of miR-132/212. Frontiers in Neurology, 2020, 11, 578720.	2.4	3
77	P1â€016: Sustained Effect of Cold Exposure on TAU Phosphorylation: Relevance for Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P405.	0.8	1
78	Animal Models of Tauopathy. , 0, , 215-236.		0