
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6122110/publications.pdf Version: 2024-02-01

SHAN L

#	Article	IF	CITATIONS
1	Catalytically Active CoSe ₂ Supported on Nitrogenâ€Doped Three Dimensional Porous Carbon as a Cathode for Highly Stable Lithiumâ€&ulfur Battery. ChemPhysChem, 2022, 23, .	1.0	5
2	Fabrication of highly-conductive porous capacitor electrodes by the insertion of Cu-nanoparticles into N-doped flocculated carbon catalysts. Journal of Colloid and Interface Science, 2022, 610, 106-115.	5.0	1
3	Engineering the densities of grain boundaries within particle-assembled NiCo2O4 rods by sulfurization for effective water electrolysis. Journal of Electroanalytical Chemistry, 2022, 908, 116098.	1.9	4
4	Enhanced electrochemical performance of a Li-O2 battery using Co and N co-doped biochar cathode prepared in molten salt medium. Electrochimica Acta, 2022, 410, 140002.	2.6	10
5	Ni2P nanoparticles-inserted NiFeP nanosheets with rich interfaces as efficient catalysts for the oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 903, 163855.	2.8	20
6	Copper mesh supported nickel nanowire array as a catalyst for the hydrogen evolution reaction in high current density water electrolysis. Dalton Transactions, 2022, 51, 5309-5314.	1.6	6
7	Synergistic Effect between Monodisperse Fe ₃ O ₄ Nanoparticles and Nitrogen-Doped Carbon Nanosheets to Promote Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 16310-16319.	4.0	13
8	Effect of surface reconstruction induced by different electrochemical methods on hydrogen evolution performance of Ni2P array catalysts. International Journal of Hydrogen Energy, 2022, 47, 17097-17106.	3.8	6
9	In-site hydrogen bubble template method to prepare Ni coated metal meshes as effective bi-functional electrodes for water splitting. Dalton Transactions, 2022, 51, 9681-9688.	1.6	8
10	Three-dimensional N-doped super-hydrophilic carbon electrodes with porosity tailored by Cu ₂ O template-assisted electrochemical oxidation to improve the performance of electrical double-layer capacitors. Journal of Materials Chemistry A, 2021, 9, 2928-2936.	5.2	21
11	Co ₃ O ₄ –CuCoO ₂ hybrid nanoplates as a low-cost and highly active catalyst for producing hydrogen from ammonia borane. New Journal of Chemistry, 2021, 45, 2688-2695.	1.4	15
12	Layer-structured FeCo bihydroxide as an ultra-stable bifunctional electrocatalyst for water splitting at high current densities. Sustainable Energy and Fuels, 2021, 5, 2747-2752.	2.5	13
13	Quick <i>in situ</i> generation of a quinone-enriched surface of N-doped carbon cloth electrodes for electric double-layer capacitors. Dalton Transactions, 2021, 50, 3651-3659.	1.6	14
14	Highly electrocatalytic three-dimensional chain-like nickel-based electrocatalysts with hierarchical structures for hydrogen evolution reactions. Dalton Transactions, 2021, 50, 14724-14729.	1.6	2
15	MnOOH nanoparticles integrated nitrogen doped porous nanosheet-like carbon network as a non-noble catalyst for electro-oxidation of sodium borohydride. International Journal of Hydrogen Energy, 2021, 46, 9380-9393.	3.8	3
16	αâ€Co(OH) ₂ Thinâ€Layered Cactusâ€Like Nanostructures Wrapped Ni ₃ S _{2Nanowires: A Robust and Potential Catalyst for Electroâ€oxidation of Hydrazine. ChemElectroChem, 2021, 8, 937-947.})> 1.7	7
17	Simplifying the creation of iron compound inserted, nitrogen-doped carbon nanotubes and its catalytic application. Journal of Alloys and Compounds, 2021, 857, 157543.	2.8	6
18	How to get to best oxygen evolution behavior from the electrolysis practice of the seawater. International Journal of Hydrogen Energy, 2021, 46, 12936-12943.	3.8	35

#	Article	IF	CITATIONS
19	Implanting Cobalt Atom Clusters within Nitrogenâ€Doped Carbon Network as Highly Stable Cathode for Lithium–Sulfur Batteries. Small Methods, 2021, 5, e2100066.	4.6	33
20	Integrating Ni nanoparticles into MoN nanosheets form Schottky heterojunctions to boost its electrochemical performance for water electrolysis. Journal of Alloys and Compounds, 2021, 867, 158983.	2.8	35
21	Mesoporous N-doped carbon with atomically dispersed Zn-Nx active sites as high-performance cathode in lithium-oxygen batteries. Ionics, 2021, 27, 4695-4704.	1.2	2
22	Fe3C-inserted "tube plugging into porous network―nanohybrids as advanced sulfur hosts for lithium-sulfur batteries. Journal of Alloys and Compounds, 2021, 877, 160286.	2.8	22
23	Ultrastable NiFeOOH/NiFe/Ni electrocatalysts prepared by in-situ electro-oxidation for oxygen evolution reaction at large current density. Applied Surface Science, 2021, 564, 150440.	3.1	30
24	Co, Fe-ions intercalated Ni(OH)2 network-like nanosheet arrays as highly efficient non-noble catalyst for electro-oxidation of urea. International Journal of Hydrogen Energy, 2021, 46, 34318-34332.	3.8	15
25	1D NiHPO4 nanotubes prepared using dissolution equilibrium as bifunctional electrocatalyst for high-efficiency water splitting. Journal of Power Sources, 2021, 513, 230543.	4.0	13
26	Co Nanoparticle-Encapsulated Nitrogen-Doped Carbon Nanotubes as an Efficient and Robust Catalyst for Electro-Oxidation of Hydrazine. Nanomaterials, 2021, 11, 2857.	1.9	3
27	Design and synthesis of tremella-like Ni–Co–S flakes on co-coated cotton textile as high-performance electrode for flexible supercapacitor. Journal of Alloys and Compounds, 2020, 814, 151789.	2.8	43
28	Multidimensional regulation of Ni3S2@Co(OH)2 catalyst with high performance for wind energy electrolytic water. Journal of Power Sources, 2020, 446, 227348.	4.0	50
29	Nitrogen-doped mesoporous carbon nanosheet network entrapped nickel nanoparticles as an efficient catalyst for electro-oxidation of glycerol. International Journal of Hydrogen Energy, 2020, 45, 28821-28835.	3.8	14
30	A highly-stable flexible electrode based on Co(OH)2@NiSe2 electroplated on metals co-coated textiles. Materials Letters, 2020, 279, 128492.	1.3	4
31	Synthesis of Ni ₃ S ₂ catalysts using various sulphur sources and their HER and OER performances. CrystEngComm, 2020, 22, 6517-6528.	1.3	21
32	Uniform Bamboo-like N-Doped Carbon Nanotubes Derived from a g-C ₃ N ₄ Substrate Grown via Anchoring Effect to Boost the Performance of Metal–Air Batteries. ACS Applied Energy Materials, 2020, 3, 11213-11222.	2.5	20
33	Self-standing heterostructured NiC <i>_x</i> -NiFe-NC/biochar as a highly efficient cathode for lithium–oxygen batteries. Beilstein Journal of Nanotechnology, 2020, 11, 1809-1821.	1.5	8
34	Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Research, 2020, 13, 2098-2105.	5.8	92
35	Hollow-structured NiCoP nanorods as high-performance electrodes for asymmetric supercapacitors. Materials and Design, 2020, 193, 108807.	3.3	40
36	Cobalt nanoparticles intercalated nitrogen-doped mesoporous carbon nanosheet network as potential catalyst for electro-oxidation of hydrazine. International Journal of Hydrogen Energy, 2020, 45, 19344-19356.	3.8	13

#	Article	IF	CITATIONS
37	A highly efficient water electrolyser cell assembled by asymmetric array electrodes based on Co, Fe-doped Ni(OH)2 nanosheets. Applied Surface Science, 2020, 528, 146972.	3.1	38
38	Hydrophilic Ni(OH)2@CoB nano-chains with shell-core structure as an efficient catalyst for oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 844, 156129.	2.8	29
39	N-Doped Carbon Networks Containing Inserted FeN _{<i>x</i>} @NC Nanospheroids and Bridged by Carbon Nanotubes as Enhanced Catalysts for the Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 6979-6989.	3.2	32
40	A High Faraday Efficiency NiMoO ₄ Nanosheet Array Catalyst by Adjusting the Hydrophilicity for Overall Water Splitting. Chemistry - A European Journal, 2020, 26, 12067-12074.	1.7	49
41	Conductive Sulfur-Rich Copolymer Composites as Lithium–Sulfur Battery Electrodes with Fast Kinetics and a High Cycle Stability. ACS Sustainable Chemistry and Engineering, 2020, 8, 10389-10401.	3.2	27
42	Tailoring hollow structure within NiCoP nanowire arrays via nanoscale Kirkendall diffusion to enhance hydrogen evolution reaction. Nanotechnology, 2020, 31, 425404.	1.3	11
43	Moltenâ€Salt Media Synthesis of Nâ€Doped Carbon Tubes Containing Encapsulated Co Nanoparticles as a Bifunctional Air Cathode for Zincâ€Air Batteries. Chemistry - A European Journal, 2020, 26, 10752-10758.	1.7	25
44	CuO–NiO/Co3O4 hybrid nanoplates as highly active catalyst for ammonia borane hydrolysis. International Journal of Hydrogen Energy, 2020, 45, 8168-8176.	3.8	61
45	Core-shell structured Fe3O4@MnO2 nanospheres to achieve high cycling stability as electrode for supercapacitors. Ionics, 2019, 25, 665-673.	1.2	16
46	Grain boundaries of Co(OH)2-Ni-Cu nanosheets on the cotton fabric substrate for stable and efficient electro-oxidation of hydrazine. International Journal of Hydrogen Energy, 2019, 44, 24591-24603.	3.8	16
47	Co ₃ O ₄ /CuMoO ₄ Hybrid Microflowers Composed of Nanorods with Rich Particle Boundaries as a Highly Active Catalyst for Ammonia Borane Hydrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 16474-16482.	3.2	49
48	Dual-shelled Cu2O@Cu9S5@MnO2 hollow spheres as advanced cathode material for energy storage. Journal of Alloys and Compounds, 2019, 805, 977-983.	2.8	11
49	Hierarchical core–shell structured Ni ₃ S ₂ /NiMoO ₄ nanowires: a high-performance and reusable electrochemical sensor for glucose detection. Analyst, The, 2019, 144, 4925-4934.	1.7	24
50	Highly Efficient and Stable Catalyst Based on Co(OH) ₂ @Ni Electroplated on Cu-Metallized Cotton Textile for Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 29791-29798.	4.0	49
51	Highly efficient non-enzymatic glucose sensor based on CuxS hollow nanospheres. Applied Surface Science, 2019, 492, 407-416.	3.1	38
52	Mn Nanoparticles Encapsulated within Mesoporous Helical Nâ€Đoped Carbon Nanotubes as Highly Active Air Cathode for Zinc–Air Batteries. Advanced Sustainable Systems, 2019, 3, 1900085.	2.7	19
53	Flexible electrode with composite structure for large-scale production. Journal of Alloys and Compounds, 2019, 810, 151871.	2.8	5
54	Nickel phosphate nanowires directly grown on Ni foam as binder-free electrode for pseudocapacitors. Materials Letters, 2019, 257, 126742.	1.3	25

#	Article	lF	CITATIONS
55	CoNiSe2 nanorods directly grown on Ni foam as advanced cathodes for asymmetric supercapacitors. Chemical Engineering Journal, 2019, 364, 320-327.	6.6	104
56	Hierarchical core-shell structured CoNi2S4/Ni3S2@Ni(OH)2 nanosheet arrays as electrode for electrochemical energy storage. Journal of Alloys and Compounds, 2019, 785, 684-691.	2.8	30
57	Mesoporous nickel selenide N-doped carbon as a robust electrocatalyst for overall water splitting. Electrochimica Acta, 2019, 300, 93-101.	2.6	70
58	Rich-grain-boundary of Ni ₃ Se ₂ nanowire arrays as multifunctional electrode for electrochemical energy storage and conversion applications. Journal of Materials Chemistry A, 2019, 7, 3344-3352.	5.2	97
59	Mesoporous cobalt selenide/nitrogen-doped carbon hybrid as bifunctional electrocatalyst for hydrogen evolution and oxygen reduction reactions. Journal of Power Sources, 2019, 423, 1-8.	4.0	38
60	N-doped porous transition metal-based carbon nanosheet networks as a multifunctional electrocatalyst for rechargeable zinc–air batteries. Chemical Communications, 2019, 55, 2924-2927.	2.2	54
61	Cobalt-nickel phosphides@carbon spheres as highly efficient and stable electrocatalyst for hydrogen evolution reaction. Catalysis Communications, 2019, 124, 1-5.	1.6	20
62	Porous-sheet-assembled Ni(OH) ₂ /NiS arrays with vertical in-plane edge structure for supercapacitors with high stability. Dalton Transactions, 2019, 48, 17364-17370.	1.6	18
63	Synthesis of nitrogen-doped MnO/carbon network as an advanced catalyst for direct hydrazine fuel cells. Journal of Power Sources, 2019, 413, 209-215.	4.0	41
64	Mesoporous nickel-sulfide/nickel/N-doped carbon as HER and OER bifunctional electrocatalyst for water electrolysis. International Journal of Hydrogen Energy, 2019, 44, 2832-2840.	3.8	112
65	High-performance all-solid-state asymmetric supercapacitors based on sponge-like NiS/Ni3S2 hybrid nanosheets. Materials Today Energy, 2019, 11, 211-217.	2.5	53
66	Ni(OH) ₂ Nanoflakes Supported on 3D Ni ₃ Se ₂ Nanowire Array as Highly Efficient Electrodes for Asymmetric Supercapacitor and Ni/MH Battery. Small, 2019, 15, e1802861.	5.2	84
67	N-doped mesoporous FeNx/carbon as ORR and OER bifunctional electrocatalyst for rechargeable zinc-air batteries. Electrochimica Acta, 2019, 296, 653-661.	2.6	135
68	Mesoporous CoS/Nâ€doped Carbon as HER and ORR Bifunctional Electrocatalyst for Water Electrolyzers and Zincâ€Air Batteries. ChemCatChem, 2019, 11, 1026-1032.	1.8	43
69	Toward high performance of zinc-air battery using hydrophobic carbon foam-based diffusion electrode. Journal of Industrial and Engineering Chemistry, 2019, 71, 284-292.	2.9	11
70	Cubic CoMn2O4 particles directly grown on Ni foam as binder-free electrode for asymmetric supercapacitors. Materials Letters, 2019, 237, 209-212.	1.3	25
71	N-Doped 3D Porous Ni/C Bifunctional Electrocatalysts for Alkaline Water Electrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 3974-3981.	3.2	59
72	Nano-engineering PdNi networks by voltammetric dealloying for ethanol oxidation. Journal of Applied Electrochemistry, 2019, 49, 39-44.	1.5	7

#	Article	IF	CITATIONS
73	Hollow core-shell structured Cu2O@Cu1.8S spheres as novel electrode for enzyme free glucose sensing. Materials Science and Engineering C, 2019, 95, 174-182.	3.8	22
74	MnO/Nâ€Đoped Mesoporous Carbon as Advanced Oxygen Reduction Reaction Electrocatalyst for Zinc–Air Batteries. Chemistry - A European Journal, 2019, 25, 2868-2876.	1.7	29
75	Biomass-derived 3D hierarchical N-doped porous carbon anchoring cobalt-iron phosphide nanodots as bifunctional electrocatalysts for Li O2 batteries. Journal of Power Sources, 2019, 412, 433-441.	4.0	23
76	Synthesis of porous nitrogen and sulfur co-doped carbon beehive in a high-melting-point molten salt medium for improved catalytic activity toward oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 5124-5132.	3.8	50
77	Tailoring the porous structure of N-doped carbon for increased oxygen reduction reaction activity. Catalysis Communications, 2018, 107, 29-32.	1.6	11
78	Synergistic relationship between the three-dimensional nanostructure and electrochemical performance in biocarbon supercapacitor electrode materials. Sustainable Energy and Fuels, 2018, 2, 772-785.	2.5	53
79	Tuning the extent of porosity and composition of N-doped carbon materials by NaNO3 and its effect on electrochemical activity. Materials Research Bulletin, 2018, 104, 134-142.	2.7	11
80	Core-shell structured Ni3S2@Co(OH)2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors. Chemical Engineering Journal, 2018, 345, 48-57.	6.6	122
81	Achieving highly practical capacitance of MnO ₂ by using chain-like CoB alloy as support. Nanoscale, 2018, 10, 7813-7820.	2.8	27
82	Mesoporous and amorphous NiCoBP alloys with high specific capacitance for supercapacitors. Ionics, 2018, 24, 529-537.	1.2	10
83	Nano-engineered intrapores in nanoparticles of PtNi networks for increased oxygen reduction reaction activity. Journal of Power Sources, 2018, 374, 48-54.	4.0	48
84	Rational Design of Hierarchically Core–Shell Structured Ni ₃ S ₂ @NiMoO ₄ Nanowires for Electrochemical Energy Storage. Small, 2018, 14, e1800791.	5.2	111
85	Correlating electrochemical impedance with hierarchical structure for porous carbon-based supercapacitors using a truncated transmission line model. Electrochimica Acta, 2018, 284, 597-608.	2.6	36
86	Hydrophobic 3D Fe/N/S doped graphene network as oxygen electrocatalyst to achieve unique performance of zinc-air battery. Chemical Engineering Journal, 2018, 353, 472-480.	6.6	50
87	Integration of supercapacitors into printed circuit boards. Journal of Energy Storage, 2018, 19, 28-34.	3.9	14
88	New insights into the electrochemical behaviour of porous carbon electrodes for supercapacitors. Journal of Energy Storage, 2018, 19, 337-347.	3.9	42
89	Highly active porous Co–B nanoalloy synthesized on liquid-gas interface for hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 2018, 43, 17543-17555.	3.8	41
90	A 3D petal-like Ni ₃ S ₂ /CoNi ₂ S ₄ hybrid grown on Ni foam as a binder-free electrode for energy storage. Sustainable Energy and Fuels, 2018, 2, 1791-1798.	2.5	33

#	Article	IF	CITATIONS
91	Double-shelled tremella-like NiO@Co3O4@MnO2 as a high-performance cathode material for alkaline supercapacitors. Journal of Power Sources, 2017, 343, 76-82.	4.0	74
92	Synthesis of high surface area mesoporous MnO 2 via a "metastable―aqueous interfacial reaction. Journal of Colloid and Interface Science, 2017, 503, 76-85.	5.0	15
93	Ultra-high surface area and mesoporous N-doped carbon derived from sheep bones with high electrocatalytic performance toward the oxygen reduction reaction. Journal of Solid State Electrochemistry, 2017, 21, 2947-2954.	1.2	19
94	Tailoring nanopores within nanoparticles of PtCo networks as catalysts for methanol oxidation reaction. Electrochimica Acta, 2017, 255, 55-62.	2.6	36
95	Manganese dioxide core–shell nanostructure to achieve excellent cycling stability for asymmetric supercapacitor applications. RSC Advances, 2017, 7, 33635-33641.	1.7	33
96	Self-standing electrodes with core-shell structures for high-performance supercapacitors. Energy Storage Materials, 2017, 9, 119-125.	9.5	52
97	Toward high practical capacitance of Ni(OH) ₂ using highly conductive CoB nanochain supports. Journal of Materials Chemistry A, 2017, 5, 92-96.	5.2	45
98	Nano-sized Co/Co(OH)2 core-shell structure synthesized in molten salt as electrode materials for supercapacitors. Ionics, 2017, 23, 725-730.	1.2	9
99	Enhanced Cycleability of Amorphous MnO2 by Covering on α-MnO2 Needles in an Electrochemical Capacitor. Materials, 2017, 10, 988.	1.3	28
100	Harvesting a 3D N-Doped Carbon Network from Waste Bean Dregs by Ionothermal Carbonization as an Electrocatalyst for an Oxygen Reduction Reaction. Materials, 2017, 10, 1366.	1.3	26
101	V2O5-SiO2 hybrid as anode material for aqueous rechargeable lithium batteries. Ionics, 2016, 22, 1593-1601.	1.2	10
102	Ranunculus flower-like Ni(OH) ₂ @Mn ₂ O ₃ as a high specific capacitance cathode material for alkaline supercapacitors. Journal of Materials Chemistry A, 2016, 4, 7591-7595.	5.2	55
103	The effect of the internal magnetism of ferromagnetic catalysts on their catalytic activity toward oxygen reduction reaction under an external magnetic field. Ionics, 2016, 22, 2195-2202.	1.2	26
104	Cage-like MnO 2 -Mn 2 O 3 hollow spheres with high specific capacitance and high rate capability as supercapacitor material. Electrochimica Acta, 2016, 219, 540-546.	2.6	58
105	A cost effective, highly porous, manganese oxide/carbon supercapacitor material with high rate capability. Journal of Materials Chemistry A, 2016, 4, 5390-5394.	5.2	56
106	Synthesis of hierarchical threeâ€dimensional CuO spindles for highly sensitive glucose determination. Micro and Nano Letters, 2016, 11, 870-875.	0.6	4
107	N-doped porous carbon material made from fish-bones and its highly electrocatalytic performance in the oxygen reduction reaction. RSC Advances, 2015, 5, 48965-48970.	1.7	33
108	Ultrathin willow-like CuO nanoflakes as an efficient catalyst for electro-oxidation of hydrazine. Journal of Power Sources, 2015, 289, 22-25.	4.0	52

#	Article	IF	CITATIONS
109	Mesoporous nitrogen-doped carbon derived from carp with high electrocatalytic performance for oxygen reduction reaction. Journal of Power Sources, 2015, 278, 213-217.	4.0	26
110	Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. Journal of Power Sources, 2015, 280, 526-532.	4.0	107
111	Liquid–liquid interface-mediated room-temperature synthesis of amorphous NiCo pompoms from ultrathin nanosheets with high catalytic activity for hydrazine oxidation. Chemical Communications, 2015, 51, 3570-3573.	2.2	64
112	N-doped carbon encapsulated Co3O4 nanoparticles as a synergistic catalyst for oxygen reduction reaction in acidic media. International Journal of Hydrogen Energy, 2015, 40, 3875-3882.	3.8	24
113	Platinum-Tin Nanowires Anchored on a Nitrogen-Doped Nanotube Composite Embedded with Iron/Iron Carbide Particles as an Ethanol Oxidation Electrocatalyst. Journal of the Electrochemical Society, 2015, 162, H79-H85.	1.3	13
114	Sponge-like carbon containing nitrogen and iron provides a non-precious oxygen reduction catalyst. Journal of Solid State Electrochemistry, 2015, 19, 1181-1186.	1.2	6
115	Room-temperature synthesis with inert bubble templates to produce "clean―PdCoP alloy nanoparticle networks for enhanced hydrazine electro-oxidation. RSC Advances, 2015, 5, 9837-9842.	1.7	27
116	A Co-N-doped carbonized egg white as a high-performance, non-precious metal, electrocatalyst for oxygen reduction. Journal of Solid State Electrochemistry, 2015, 19, 1727-1733.	1.2	27
117	Control of CuO nanocrystal morphology from ultrathin "willow-leaf―to "flower-shaped―for increased hydrazine oxidation activity. Journal of Power Sources, 2015, 300, 344-350.	4.0	31
118	Pig bones derived N-doped carbon with multi-level pores as electrocatalyst for oxygen reduction. Journal of Power Sources, 2015, 297, 295-301.	4.0	69
119	Cow dung-derived nitrogen-doped carbon as a cost effective, high activity, oxygen reduction electrocatalyst. RSC Advances, 2015, 5, 27112-27119.	1.7	28
120	Amorphous PtNiP particle networks of different particle sizes for the electro-oxidation of hydrazine. RSC Advances, 2015, 5, 68655-68661.	1.7	37
121	The enhanced electrocatalytic activity of okara-derived N-doped mesoporous carbon for oxygen reduction reaction. Journal of Power Sources, 2015, 274, 741-747.	4.0	77
122	Egg White Derived Tremella-Like Mesoporous Carbon as Efficient Non-Precious Electrocatalyst for Oxygen Reduction. Journal of the Electrochemical Society, 2014, 161, H637-H642.	1.3	20
123	Synthesis of Mesoporous Carbon from Okara and Application as Electrocatalyst Support. Fuel Cells, 2014, 14, 296-302.	1.5	16
124	Palygorskite Hybridized Carbon Nanocomposite as PtRulr Support for the Methanol Oxidation Reaction. Fuel Cells, 2014, 14, 42-48.	1.5	3
125	Hydrogen and Fuel Cell Technologies at the Hydrogen South Africa (HySA) Systems Competence Centre. Platinum Metals Review, 2014, 58, 68-81.	1.5	5
126	Synergy among manganese, nitrogen and carbon to improve the catalytic activity for oxygen reduction reaction. Journal of Power Sources, 2014, 251, 363-369.	4.0	54

#	Article	IF	CITATIONS
127	Highly active Vulcan carbon composite for oxygen reduction reaction in alkaline medium. Electrochimica Acta, 2014, 133, 391-398.	2.6	59
128	Ultrafine amorphous PtNiP nanoparticles supported on carbon asÂefficiency electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2014, 259, 87-91.	4.0	31
129	Nanostructured Pt supported on cocoon-derived carbon as an efficient electrocatalyst for methanol oxidation. Journal of Solid State Electrochemistry, 2014, 18, 1503-1512.	1.2	14
130	Effect of stabilizers on the synthesis of palladium–nickel nanoparticles supported on carbon for ethanol oxidation in alkaline medium. Journal of Power Sources, 2014, 260, 12-18.	4.0	29
131	Synergy between isolated-Fe3O4 nanoparticles and CNx layers derived from lysine to improve the catalytic activity for oxygen reduction reaction. International Journal of Hydrogen Energy, 2014, 39, 3739-3745.	3.8	22
132	PtSn/C catalysts for ethanol oxidation: The effect of stabilizers on the morphology and particle distribution. Journal of Power Sources, 2014, 247, 142-150.	4.0	47
133	An Fe@Fe3C-inserted carbon nanotube/graphite composite support providing highly dispersed Pt nanoparticles for ethanol oxidation. Electrochimica Acta, 2014, 132, 251-257.	2.6	11
134	Evolution of nanoscale amorphous, crystalline and phase-segregated PtNiP nanoparticles and their electrocatalytic effect on methanol oxidation reaction. Physical Chemistry Chemical Physics, 2014, 16, 3593.	1.3	61
135	A Co ₃ W ₃ C promoted Pd catalyst exhibiting competitive performance over Pt/C catalysts towards the oxygen reduction reaction. Chemical Communications, 2014, 50, 566-568.	2.2	60
136	Gas–liquid interface-mediated room-temperature synthesis of "clean―PdNiP alloy nanoparticle networks with high catalytic activity for ethanol oxidation. Chemical Communications, 2014, 50, 12877-12879.	2.2	48
137	Three-dimensional iron, nitrogen-doped carbon foams as efficient electrocatalysts for oxygen reduction reaction in alkaline solution. Electrochimica Acta, 2014, 142, 317-323.	2.6	29
138	Ultrafine iron oxide nanoparticles supported on N-doped carbon black as an oxygen reduction reaction catalyst. International Journal of Hydrogen Energy, 2014, 39, 14777-14782.	3.8	30
139	Synthesis of ultrafine amorphous PtP nanoparticles and the effect of PtP crystallinity on methanol oxidation. RSC Advances, 2014, 4, 20722-20728.	1.7	26
140	Evolution of the electrocatalytic activity of carbon-supported amorphous platinum–ruthenium–nickel–phosphorous nanoparticles for methanol oxidation. Journal of Power Sources, 2014, 268, 498-507.	4.0	28
141	Lysine-derived mesoporous carbon nanotubes as a proficient non-precious catalyst for oxygen reduction reaction. Journal of Power Sources, 2014, 269, 54-60.	4.0	18
142	SnO2-embedded worm-like carbon nanofibers supported Pt nanoparticles for oxygen reduction reaction. Electrochimica Acta, 2014, 141, 13-19.	2.6	27
143	Chicken bone-derived N-doped porous carbon materials as an oxygen reduction electrocatalyst. Electrochimica Acta, 2014, 147, 520-526.	2.6	40
144	Chain-like SnO2-CNxNanocomposite Supported Pt Nanoparticles and Their Application in the Electrocatalytic Oxidation of Ethanol in Acid Medium. Journal of the Electrochemical Society, 2014, 161, H860-H866.	1.3	1

#	Article	IF	CITATIONS
145	Nitrogen-rich mesoporous carbon derived from melamine with high electrocatalytic performance for oxygen reduction reaction. Journal of Power Sources, 2014, 261, 238-244.	4.0	87
146	Hydrogen South Africa (HySA) Systems Competence Centre: Mission, objectives, technological achievements and breakthroughs. International Journal of Hydrogen Energy, 2014, 39, 3577-3596.	3.8	32
147	Soybean-derived mesoporous carbon as an effective catalyst support for electrooxidation of methanol. Journal of Power Sources, 2014, 248, 427-433.	4.0	52
148	Fe(III) –Induced N Enrichment in the Surface of Carbon Materials Derived from Silk Fibroins and Its Effect on Electrocatalytic Oxygen Reduction. Journal of the Electrochemical Society, 2014, 161, F795-F802.	1.3	40
149	Montmorillonite modified by CNx supported Pt forÂmethanol oxidation. International Journal of Hydrogen Energy, 2013, 38, 10381-10388.	3.8	11
150	Nanoparticulate TiO2-promoted PtRu/C catalyst for methanol oxidation. Ionics, 2013, 19, 529-534.	1.2	16
151	Surfacial carbonized palygorskite as support for high-performance Pt-based electrocatalysts. Journal of Solid State Electrochemistry, 2013, 17, 2009-2015.	1.2	5
152	Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation. Materials, 2013, 6, 2689-2700.	1.3	18
153	Supported 3-D Pt nanostructures: the straightforward synthesis and enhanced electrochemical performance for methanol oxidation in an acidic medium. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	5
154	Ethanol oxidation activity and structure of carbon-supported Pt-modified PdSn-SnO2 influenced by different stabilizers. Electrochimica Acta, 2013, 108, 833-840.	2.6	27
155	Effect of the structure of Ni nanoparticles on the electrocatalytic activity of Ni@Pd/C for formic acid oxidation. International Journal of Hydrogen Energy, 2013, 38, 13125-13131.	3.8	23
156	Highly dispersed ultrafine Pt nanoparticles on hydrophilic N-doped carbon tubes for improved methanol oxidation. RSC Advances, 2013, 3, 16949.	1.7	50
157	Synthesis of carbon-supported PdSn–SnO2 nanoparticles with different degrees of interfacial contact and enhanced catalytic activities for formic acid oxidation. Physical Chemistry Chemical Physics, 2013, 15, 13999.	1.3	33
158	Selenium functionalized carbon for high dispersion of platinum–ruthenium nanoparticles and its effect on the electrocatalytic oxidation of methanol. Journal of Power Sources, 2013, 233, 326-330.	4.0	20
159	Enhanced drug loading capacity of polypyrrole nanowire network for controlled drug release. Synthetic Metals, 2013, 163, 19-23.	2.1	48
160	Heterostructure core PdSn–SnO2 decorated by Pt asÂefficient electrocatalysts for ethanol oxidation. International Journal of Hydrogen Energy, 2013, 38, 13604-13610.	3.8	21
161	Biomass-derived activated carbon as high-performance non-precious electrocatalyst for oxygen reduction. RSC Advances, 2013, 3, 12039.	1.7	76
162	Nitrogen-doped carbon coated ZrO2 as a support for Pt nanoparticles in the oxygen reduction reaction. International Journal of Hydrogen Energy, 2013, 38, 5783-5788.	3.8	26

#	Article	IF	CITATIONS
163	Selenium-Functionalized Carbon as a Support for Platinum Nanoparticles with Improved Electrochemical Properties for the Oxygen Reduction Reaction and CO Tolerance. Journal of the Electrochemical Society, 2013, 160, H266-H270.	1.3	34
164	CNx-modified Fe3O4 as Pt nanoparticle support for the oxygen reduction reaction. Journal of Solid State Electrochemistry, 2013, 17, 1021-1028.	1.2	43
165	The Effect of PtRulr Nanoparticle Crystallinity in Electrocatalytic Methanol Oxidation. Materials, 2013, 6, 1621-1631.	1.3	25
166	A Volcano Curve: Optimizing Activity of Shell-Core PtxRuy@PdCu/C Catalysts for Methanol Oxidation by Tuning Pt/Ru Ratio. Journal of the Electrochemical Society, 2013, 160, H219-H223.	1.3	25
167	Strain Effect of Core-Shell Co@Pt/C Nanoparticle Catalyst with Enhanced Electrocatalytic Activity for Methanol Oxidation. Journal of the Electrochemical Society, 2012, 159, B270-B276.	1.3	79
168	Nanoporous PdNi/C Electrocatalyst Prepared by Dealloying Highâ€Niâ€content PdNi Alloy for Formic Acid Oxidation. Fuel Cells, 2012, 12, 1129-1133.	1.5	24
169	Palygorskite promoted PtSn/carbon catalysts and their intrinsic catalytic activity for ethanol oxidation. Electrochimica Acta, 2012, 70, 394-401.	2.6	26
170	Electrochemical synthesis of polypyrrole nanowires in the presence of gelatin. Synthetic Metals, 2011, 161, 166-172.	2.1	17
171	Amorphous CoSn alloys decorated by Pt as high efficiency electrocatalysts for ethanol oxidation. Journal of Power Sources, 2011, 196, 8000-8003.	4.0	36
172	An advantageous method for methanol oxidation: Design and fabrication of a nanoporous PtRuNi trimetallic electrocatalyst. Journal of Power Sources, 2011, 196, 9346-9351.	4.0	34
173	Study of catalyst sprayed membrane under irradiation method to prepare high performance membrane electrode assemblies for solid polymer electrolyte water electrolysis. International Journal of Hydrogen Energy, 2011, 36, 15081-15088.	3.8	47
174	A novel structural design of CNx-Fe3O4 as support to immobilize Pd for catalytic oxidation of formic acid. Catalysis Communications, 2011, 16, 60-63.	1.6	27
175	An effective electrocatalyst for ethanol oxidation: Pt-modified IrCu alloy nanoparticle. Ionics, 2011, 17, 595-601.	1.2	18
176	Pt decorating of PdNi/C as electrocatalysts for oxygen reduction. Electrochimica Acta, 2010, 55, 1519-1522.	2.6	30
177	Pt overgrowth on carbon supported PdFe seeds in the preparation of core–shell electrocatalysts for the oxygen reduction reaction. Journal of Power Sources, 2010, 195, 3498-3503.	4.0	74
178	A self-powered and thermally-responsive drug delivery system based on conducting polymers. Electrochemistry Communications, 2010, 12, 1087-1090.	2.3	23
179	Coating metals on cellulose–polypyrrole composites: A new route to self-powered drug delivery system. Electrochemistry Communications, 2010, 12, 1367-1370.	2.3	31
180	Porous grape-like spherical silica with hydrogen storage capability, synthesized using neutral dual surfactants as templates. International Journal of Hydrogen Energy, 2009, 34, 3810-3815.	3.8	6

#	Article	IF	CITATIONS
181	Performance of LiNi0.5Mn1.5O4 prepared by solid-state reaction. Journal of Power Sources, 2009, 189, 507-510.	4.0	41
182	High DMFC performance output using modified acid–base polymer blend. International Journal of Hydrogen Energy, 2008, 33, 3132-3136.	3.8	61
183	Influence of carbon sources on electrochemical performances of LiFePO4/C composites. Solid State Ionics, 2008, 179, 1810-1815.	1.3	77
184	High performance Pd-based catalysts for oxidation of formic acid. Journal of Power Sources, 2008, 180, 205-208.	4.0	154
185	Influence of different morphologies on electrochemical performance of spinel LiMn2O4. Solid State Ionics, 2008, 179, 1788-1793.	1.3	32
186	Platinum free ternary electrocatalysts prepared via organic colloidal method for oxygen reduction. Electrochemistry Communications, 2008, 10, 523-526.	2.3	35
187	Scanning Electrochemical Microscopic Study of Hydrogen Oxidation and Evolution at Electrochemically Deposited Pt Nanoparticulate Electrode Incorporated in Polyaniline. Analytical Sciences, 2004, 20, 1283-1287.	0.8	13