List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6122068/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Band structures of passive films on titanium in simulated bioliquids determined by photoelectrochemical response: principle governing the biocompatibility. Science and Technology of Advanced Materials, 2022, 23, 322-331.	2.8	4
2	Corrosion Resistance of Titanium. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2022, 73, 33-37.	0.1	0
3	Dissolution and Repassivation of Metallic Biomaterials in Bio-mechanochemical Environment. Materia Japan, 2022, 61, 393-398.	0.1	0
4	Stress corrosion cracking of copper in swollen bentonite simulating nuclear waste disposal environment. Materials and Corrosion - Werkstoffe Und Korrosion, 2021, 72, 333-338.	0.8	3
5	Drug Release Characteristic of Type 316L Stainless Steel with Self-Organized Nanopores. Journal of Smart Processing, 2021, 10, 256-260.	0.0	0
6	Structure of Corrosion Product Formed on Carbon Steel Covered with NiSO ₄ -Added Resin Coating under Sulfuric Acid Mist Environment Containing Chloride. Materials Transactions, 2021, 62, 781-787.	0.4	2
7	Corrosion behavior of carbon steel coated with a zincâ€rich paint containing metallic compounds under wet and dry cyclic conditions. Materials and Corrosion - Werkstoffe Und Korrosion, 2021, 72, 1787-1795.	0.8	5
8	Numerical Simulation of Tribocorrosion of CoCr Alloy and Ti with Galvanic Coupling in Simulated Body Fluid. Materials Transactions, 2021, 62, 1489-1494.	0.4	3
9	Corrosion Behavior of Carbon Steel Coated with a Zinc-Rich Paint Containing Aluminum Sulfate and Barium Oxide under Wet and Dry Cyclic Conditions. Zairyo To Kankyo/ Corrosion Engineering, 2021, 70, 327-333.	0.0	0
10	Formation of titania nanotubes by anodization of Ti and its alloys and their biomedical applications. Denki Kagaku, 2021, 89, 334-339.	0.0	1
11	Effects of Environmental Factors on Hydrogen Absorption and Sulfide Stress Cracking Susceptibility of Low Alloy Steel. Corrosion, 2020, 76, 698-706.	0.5	1
12	Modification of Rust Layer on Carbon Steel with Reactive Actions of Metallic Cations for Improved Corrosion Protectiveness. Corrosion, 2020, 76, 335-343.	0.5	5
13	Effect of Cations on Protective Properties of Rust Layer Formed on Carbon Steel during Wet/Dry Cyclic Corrosion. Materials Transactions, 2020, 61, 506-514.	0.4	11
14	Influence of CaO/SiO ₂ on the Reduction Behavior of Sintered Fe ₂ O ₃ –CaO–SiO ₂ –Al ₂ O ₃ Tablets at the Softening and Melting Temperatures. ISIJ International, 2020, 60, 1479-1486.	0.6	5
15	Corrosion Behavior of Rusted Carbon Steel Coated with a Paint Containing Metallic Salt under Wet and Dry Cyclic Condition. Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69, 797-803.	0.1	2
16	Structure of Corrosion Product Formed on Carbon Steel Covered with NiSO ₄ -added Resin Coating under Sulfuric Acid Mist Environment Containing Chloride. Zairyo To Kankyo/ Corrosion Engineering, 2020, 69, 148-153.	0.0	2
17	Mechano-Chemical Polishing of Alloy 600 for Accelerated Crack Initiation in Simulated PWR Primary Water Environment and Three-Dimensional Crystallographic Characterization. Materials Transactions, 2020, 61, 1339-1345.	0.4	2
18	Numerical Simulation of Tribocorrosion of CoCr Alloy and Ti with Galvanic Coupling in Simulated Body Fluid. Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69, 769-774.	0.1	1

#	Article	IF	CITATIONS
19	Cathodic Polarization Behavior of Rusted Carbon Steels Exposed to Atmospheric Environment for Different Duration. ECS Meeting Abstracts, 2020, MA2020-02, 1314-1314.	0.0	0
20	Anodization of Titanium at Elevated Temperatures in Fluoride-Free Electrolytes. ECS Meeting Abstracts, 2020, MA2020-02, 1158-1158.	0.0	0
21	(Invited) Structural Analysis of Rust Layer Formed on Carbon Steel Exposed to Atmospheric Corrosion Environments Using Synchrotron Radiation X-Rays. ECS Meeting Abstracts, 2020, MA2020-02, 1289-1289.	0.0	0
22	Effects of Oxygen on Corrosion Behavior of Pure Copper in Simulated Geological Disposal Environments. ECS Meeting Abstracts, 2020, MA2020-02, 1155-1155.	0.0	0
23	Numerical Simulation of Cathodic Process on Pure Titanium in a Simulated Body Fluid. ECS Meeting Abstracts, 2020, MA2020-02, 1157-1157.	0.0	Ο
24	(Invited) Characterization of Cathodic Properties of Anodized Titanium By a Fast Current-Controlled Polarization. ECS Meeting Abstracts, 2020, MA2020-02, 1244-1244.	0.0	0
25	Growth of Anodic TiO2 Nanotube Layers on Heat-Treated Titanium. ECS Meeting Abstracts, 2020, MA2020-02, 1201-1201.	0.0	Ο
26	Effects of Dissolved Oxygen Concentration in Electrolyte Film on Atmospheric Corrosion of Carbon Steel. ECS Meeting Abstracts, 2020, MA2020-02, 1305-1305.	0.0	0
27	Effects of Cathodic Process on Corrosion Fatigue of Type 316L Stainless Steel in 0.9 % NaCl Solution. ECS Meeting Abstracts, 2020, MA2020-02, 1309-1309.	0.0	Ο
28	Effects of Pulse Current on Proliferation Behavior and Activity of Osteoblast-like Cells on Pure Titanium. ECS Meeting Abstracts, 2020, MA2020-02, 1151-1151.	0.0	0
29	Reduction Behavior of Rusted Carbon Steel in Metallic Cation-Containing Solutions. ECS Meeting Abstracts, 2020, MA2020-02, 1159-1159.	0.0	Ο
30	Numerical Simulation of Tribocorrosion of Titanium with Galvanic Couple in Simulated Body Fluid. ECS Meeting Abstracts, 2020, MA2020-02, 1252-1252.	0.0	0
31	Electric Resistance Measurements of Anodic Oxide Films on Titanium and Zirconium. ECS Meeting Abstracts, 2020, MA2020-02, 1156-1156.	0.0	0
32	(Invited) Anodic Growth of Oxide Nanotube Layers on Titanium Alloys. ECS Meeting Abstracts, 2020, MA2020-02, 1241-1241.	0.0	0
33	Corrosion Behavior of Rusted Carbon Steel Coated with Reactive Paint Under Wet and Dry Cyclic Condition. ECS Meeting Abstracts, 2020, MA2020-02, 1338-1338.	0.0	0
34	Fast Current-Controlled Polarization for the Analysis of Rapid Cathodic Process on Anodized Metal. Journal of the Electrochemical Society, 2019, 166, C3443-C3447.	1.3	1
35	Corrosion Generation and Cleaning Effect on Surgical Instruments with Attached Radiofrequency Identification Tags in Long-Term Usage. Surgical Infections, 2019, 20, 665-671.	0.7	4
36	Stress and Adhesion of Protective Oxide Scales on Stainless Steels and RE Effects. ISIJ International, 2019, 59, 1642-1649.	0.6	3

#	Article	IF	CITATIONS
37	Cell Activity on Type 316L Stainless Steel with Self-Organized Nanopores Formed by Anodic Polarization. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2018, 82, 269-276.	0.2	1
38	Controlling the electrical conductivity of ternary wurtzite-type and metastable β-AgGaO2 by impurity doping. AlP Advances, 2018, 8, 085203.	0.6	1
39	Colloidal Zn(Te,Se)/ZnS Core/Shell Quantum Dots Exhibiting Narrow-Band and Green Photoluminescence. ACS Omega, 2018, 3, 6703-6709.	1.6	29
40	Fatigue of Metallic Biomaterials. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2018, 69, 346-350.	0.1	0
41	Formation of Nanotubular Films Based on Anodization of Ti and Ti Alloys. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2018, 69, 600-604.	0.1	1
42	Structure and Corrosion Protection of Rust Layer Formed on Pre-rusted Carbon Steel Covered with the Reactive Paint Coating. Zairyo To Kankyo/ Corrosion Engineering, 2017, 66, 93-98.	0.0	5
43	Anodization of Aluminum in Contact with Solid Electrolyte Containing Ionic Liquids. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2017, 68, 106-112.	0.1	0
44	I. Fundamental Electrochemistry of Corrosion. Zairyo To Kankyo/ Corrosion Engineering, 2017, 66, 317-325.	0.0	3
45	Cell Activity on Type 316L Stainless Steel with Self-Organized Nanopores Formed by Anodic Polarization. Materials Transactions, 2016, 57, 2065-2071.	0.4	2
46	Formation of Nano-Structured Oxide Layers Formed on Ti-Fe Alloys by Anodization. Materials Transactions, 2016, 57, 519-524.	0.4	3
47	Evaluation of Cathodic Protection Under Disbonded Coating on Buried Steel Structures by Laboratory and Field Tests. Corrosion, 2016, 72, 1311-1322.	O.5	4
48	Electrochemical Behavior of Type 304 Stainless Steel in Ionic Liquid Containing Small Amount of Water. Journal of the Electrochemical Society, 2016, 163, C506-C513.	1.3	3
49	Fabrication of Titania Nanotube Arrays by Anodization and Their Functionalization. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2016, 67, 520-526.	0.1	3
50	Structural Changes of Passive Films during Cyclic Polarization of Stainless Steels in EMI-TFSI Ionic Liquid. Zairyo To Kankyo/ Corrosion Engineering, 2016, 65, 520-526.	0.0	1
51	Degradation of Ti–6Al–4V alloy under cyclic loading in a simulated body environment with cell culturing. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 56, 6-13.	1.5	13
52	Growth of nanotubular oxide layer on Ti-Ni alloys with different Ni contents. Applied Surface Science, 2016, 369, 430-435.	3.1	9
53	Electrochemical Behavior of Type 316L Stainless Steel during Cyclic Deformation under Cell Culturing. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 79, 303-307. 	0.2	0
54	Electrochemical Characterization of Passive Films on Ni-Based Alloys in Acidic and Neutral Solutions. Materials Transactions, 2015, 56, 593-599.	0.4	4

#	Article	IF	CITATIONS
55	Electrochemical Properties of Oxide Films Formed on Cold Worked Alloy600 and Alloy690 in Simulated PWR Primary Water Environments. Zairyo To Kankyo/ Corrosion Engineering, 2015, 64, 501-507.	0.0	0
56	Characterization of oxide films formed on Alloy 600 and Alloy 690 in simulated PWR primary water by using hard X-ray photoelectron spectroscopy. Journal of Solid State Electrochemistry, 2015, 19, 3521-3531.	1.2	19
57	Long-Term Evaluation of the Protective Effect against Interference Corrosion Inside High-Temperature and High-Pressure Water Pipelines. Zairyo/Journal of the Society of Materials Science, Japan, 2015, 64, 989-996.	0.1	Ο
58	Dissolution and Repassivation with Passivity Breakdown of Various Metallic Biomaterials in Bio-Mechano-Chemical Environment. Zairyo/Journal of the Society of Materials Science, Japan, 2015, 64, 981-988.	0.1	3
59	Electrochemical Behavior of Type 316L Stainless Steel during Cyclic Deformation under Cell Culturing. Materials Transactions, 2014, 55, 1890-1894.	0.4	13
60	Corrosion Behavior and Bio-Compatibility of Lotus type Porous Stainless Steels. Zairyo To Kankyo/ Corrosion Engineering, 2014, 63, 365-370.	0.0	1
61	Breakdown of Passive Films and Repassivation of Ti-6Al-4 V Alloy with Rapid Elongation in Simulated Body Fluid including Osteoblast-like Cells. Journal of the Electrochemical Society, 2013, 160, C576-C580.	1.3	13
62	Selective pore growth on lamellar Ti–41at.%Al alloy. Electrochemistry Communications, 2013, 26, 117-120.	2.3	10
63	Advanced Analysis of Surface Films Formed on Passive Metals and Alloys Using X-ray Photoelectron Spectroscopy. , 2013, , 69-81.		Ο
64	Probabilistic Study of SCC Initiation Stage Based on Statistical Analysis in 316L Austenitic Stainless Steel. , 2013, , .		0
65	Effect of Trace Amounts of Salts on Properties of Passive Films Formed on SUS 304 Stainless Steel under Atmospheric Environment. Zairyo To Kankyo/ Corrosion Engineering, 2013, 62, 148-152.	0.0	Ο
66	In situ X-ray diffraction of surface oxide on type 430 stainless steel in breakaway condition using synchrotron radiation. Corrosion Science, 2012, 55, 219-225.	3.0	19
67	XPS characterization of passive films formed on Type 304 stainless steel in humid atmosphere. Corrosion Science, 2012, 58, 62-68.	3.0	162
68	Formation of self-organized pores on type 316 stainless steel in organic solvents. Electrochimica Acta, 2012, 82, 333-338.	2.6	36
69	Growth Process of Passive Films on Austenitic Stainless Steels under Wet-dry Cyclic Condition. ISIJ International, 2012, 52, 1356-1361.	0.6	10
70	Nitrogen-doped TiO2 mesosponge layers formed by anodization of nitrogen-containing Ti alloys. Journal of Solid State Electrochemistry, 2012, 16, 89-92.	1.2	17
71	Changes in a Last Decade. Zairyo To Kankyo/ Corrosion Engineering, 2012, 61, 413.	0.0	0
72	Effect of Environmental Conditions on the Corrosion near Shear Cut Edge of 55 mass% Al–Zn Alloy Coated Steel Sheets. ISIJ International, 2011, 51, 462-470.	0.6	5

#	Article	IF	CITATIONS
73	Numerical Analysis for Corrosion near Shear Cut Edge of Galvanic Steel Sheet. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2011, 97, 108-116.	0.1	4
74	In Situ Observation of Corrosion Products and Surface Changes in Elevated Temperature and Pressure Solutions by Micro-Raman Spectroscopic Method. Zairyo To Kankyo/ Corrosion Engineering, 2011, 60, 445-448.	0.0	2
75	Crystallographical Characterization of Initiation of Intergranular Stress Corrosion Cracking of Alloy 600 in PWR Environment. , 2011, , 1685-1698.		О
76	Numerical Analysis of Galvanic Corrosion under a Thin Electrolyte Film. Zairyo To Kankyo/ Corrosion Engineering, 2011, 60, 333-341.	0.0	7
77	Corrosion Products near the Shear Cut Edge of 55 mass% Al-Zn Alloy Coated Steel Sheets under Simulated Marine Atmospheric Environment. Zairyo To Kankyo/ Corrosion Engineering, 2010, 59, 468-477.	0.0	6
78	Selective dissolution of nanolamellar Ti–41 at.% Al alloy single crystals. Acta Materialia, 2010, 58, 2876-2886.	3.8	25
79	Influence of Oxidation Temperature and Cr Content on the Adhesion and Microstructure of Scale on Low Cr Steels. Oxidation of Metals, 2010, 73, 1-13.	1.0	35
80	TiO ₂ Nanotubes – Annealing Effects on Detailed Morphology and Structure. European Journal of Inorganic Chemistry, 2010, 2010, 4351-4356.	1.0	129
81	Strength of self-organized TiO2 nanotube arrays. Acta Materialia, 2010, 58, 4956-4967.	3.8	33
82	Formation of Oxide Nanotubes and Bamboo-Like Structures via Oxidation of Cu, Fe and Ni Nanowires. Materials Science Forum, 2010, 658, 232-235.	0.3	0
83	Numerical Analysis Model of Galvanic Corrosion with Ion Movement and Reactions. ISIJ International, 2010, 50, 743-751.	0.6	5
84	Initial Stage of SCC of Type 316L Stainless Steel in High Temperature and High Pressure Aqueous Solution. ECS Transactions, 2009, 16, 227-231.	0.3	0
85	Effect of Alloying Elements on Electrochemical Behavior of Fe-18Cr Alloy. ECS Transactions, 2009, 16, 313-319.	0.3	0
86	Passivity Breakdown and Repassivation on TiNi During Rapid Straining Accompanying Martensitic Phase Transformation. ECS Transactions, 2009, 16, 233-238.	0.3	2
87	Dye-Sensitized TiO2 Nanotubes with Ag Nanoparticles. ECS Transactions, 2009, 16, 261-266.	0.3	2
88	Transition in the nanoporous structure of iron oxides during the oxidation of iron nanoparticles and nanowires. Acta Materialia, 2009, 57, 4261-4266.	3.8	35
89	Metallurgical aspects on the formation of self-organized anodic oxide nanotube layers. Electrochimica Acta, 2009, 54, 5155-5162.	2.6	37
90	Anodic Porous and Tubular Oxide Layers on Ti Alloys. ECS Transactions, 2009, 16, 359-367.	0.3	7

#	Article	IF	CITATIONS
91	Anodic oxide nanotube layers on Ti–Ta alloys: Substrate composition, microstructure and self-organization on two-size scales. Corrosion Science, 2009, 51, 1528-1533.	3.0	61
92	Crystallographic characterization of stress corrosion cracking initiation on type316L stainless steel in high temperature and high pressure water. Journal of Physics: Conference Series, 2009, 165, 012009.	0.3	6
93	Physical Properties of Iron-Oxide Scales on Si-Containing Steels at High Temperature. Materials Transactions, 2009, 50, 2242-2246.	0.4	208
94	Numerical Analysis Model of Galvanic Corrosion with Ion Movement and Reactions. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2009, 95, 144-153.	0.1	8
95	Surface modification of β-Type titanium alloy by electrochemical potential pulse polarization. Journal of Physics: Conference Series, 2009, 165, 012007.	0.3	3
96	TiO ₂ nanotube layers with metallic nanoparticles. Journal of Physics: Conference Series, 2009, 165, 012037.	0.3	9
97	In vitro corrosion resistance of Lotus-type porous Ni-free stainless steels. Journal of Materials Science: Materials in Medicine, 2008, 19, 3385-3397.	1.7	12
98	Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys. Electrochemistry Communications, 2008, 10, 910-913.	2.3	73
99	Corrosion behaviour of Lotus-type porous high nitrogen nickel-free stainless steels. Corrosion Science, 2008, 50, 183-193.	3.0	37
100	Characterization of Reaction of Green Rust with Foreign Ions using X-ray Absorption Fine Structure. Zairyo To Kankyo/ Corrosion Engineering, 2008, 57, 353-357.	0.0	4
101	Corrosion Behavior under Black Deposit on Low Cr Bearing Steels in NaCl Completion Fluid. ISIJ International, 2008, 48, 1758-1765.	0.6	3
102	Strucutral Analysis of Passive Films on Stainless Steel by Synchrotron Radiation. Zairyo To Kankyo/ Corrosion Engineering, 2008, 57, 250-257.	0.0	5
103	Semiconductor properties and protective role of passive films of iron base alloys. Corrosion Science, 2007, 49, 195-202.	3.0	112
104	Photoelectrochemical Response and Corrosion Property of Passive Films on Fe-18Cr Alloy. , 2006, , 285-290.		0
105	Atmospheric Corrosion of Electroplated Cu Thin Film in Moist Oxygen Environment. ECS Transactions, 2006, 1, 243-247.	0.3	1
106	Environmental Factors Affecting Hydrogen Entry into High Strength Steel due to Atmospheric Corrosion. Materials Transactions, 2006, 47, 2956-2962.	0.4	43
107	Electrochemical Behaviour of Lotus-Type Porous SUS304L and SUS316L Stainless Steels. Materials Transactions, 2006, 47, 2229-2232.	0.4	4
108	Semiconductive behavior of passive films formed on Fe-Cr alloy. Journal of Electroceramics, 2006, 16, 49-54.	0.8	15

#	Article	IF	CITATIONS
109	Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures. Acta Biomaterialia, 2006, 2, 709-715.	4.1	119
110	Nanotube oxide coating on Ti–29Nb–13Ta–4.6Zr alloy prepared by self-organizing anodization. Electrochimica Acta, 2006, 52, 94-101.	2.6	98
111	Fabrication of aligned pores in aluminum by electrochemical dissolution of monotectic alloys solidified under a magnetic field. Scripta Materialia, 2006, 54, 527-532.	2.6	52
112	Improvement of cell adhesion on poly(L-lactide) by atmospheric plasma treatment. Journal of Biomedical Materials Research - Part A, 2006, 77A, 112-118.	2.1	93
113	Degradation of the Mechanical Strength of Al Alloys by Electrochemically Introduced Hydrogen. ECS Transactions, 2006, 3, 185-190.	0.3	0
114	Electrochemical Characterization of Ti and Ti Base Alloys under Simulated Body Fluid Environment. Materials Science Forum, 2006, 512, 249-254.	0.3	4
115	Fabrication of Porous Aluminium and Copper Media by Using Monotectic Solidification under a Magnetic Field. Materials Science Forum, 2006, 512, 289-294.	0.3	0
116	Semiconductor Property of Passive Films and Corrosion Behavior of Fe-Cr Alloys. , 2006, , 33-49.		2
117	Atomic-Structure Characterization of Passive Film of Fe by Grazing Incidence X-ray Scattering at SPring-8. , 2006, , 95-100.		9
118	Effect of Environmental Factors for the Corrosion Behavior of Stainless Steels Exposed in River. Zairyo To Kankyo/ Corrosion Engineering, 2005, 54, 106-112.	0.0	1
119	Current Status and Future of Studies on Corrosion of Carbon Steel in the Presence of Magnetite. Zairyo To Kankyo/ Corrosion Engineering, 2005, 54, 2-8.	0.0	8
120	Electrochemical conditions for environment-assisted cracking of 6061 Al alloy. Corrosion Science, 2005, 47, 2441-2449.	3.0	15
121	Semiconductive Properties of Passive Films Formed on Fe-18Cr in Borate Buffer Solution. Journal of the Electrochemical Society, 2004, 151, B39.	1.3	43
122	Aging behavior of ultrafine grained Al–2 wt%Cu alloy severely deformed by accumulative roll bonding. Science and Technology of Advanced Materials, 2004, 5, 173-180.	2.8	57
123	Semiconductor properties of passive films formed on sputter-deposited Fe–18Cr alloy thin films with various additive elements. Science and Technology of Advanced Materials, 2004, 5, 195-200.	2.8	23
124	Morphological characterization of porous InP superlattices. Science and Technology of Advanced Materials, 2004, 5, 119-123.	2.8	17
125	Fabrication of porous aluminum with deep pores by using Al–In monotectic solidification and electrochemical etching. Materials Letters, 2004, 58, 911-915.	1.3	31
126	Electrochemical noise analysis for estimation of corrosion rate of carbon steel in bicarbonate solution. Corrosion Science, 2003, 45, 2093-2104.	3.0	33

#	Article	IF	CITATIONS
127	Direct Plating of Electroless Ni-P Layers on Sputter-Deposited Al-Ni Alloy Films. Journal of the Electrochemical Society, 2003, 150, C461.	1.3	12
128	Effect of Photo Irradiation on Corrosion Behaviour and Modification of Passive Films by Ultra-Violet Light. Zairyo To Kankyo/ Corrosion Engineering, 2002, 51, 453-457.	0.0	2
129	Semiconductive behavior of passive films formed on pure Cr and Fe–Cr alloys in sulfuric acid solution. Electrochimica Acta, 2002, 47, 4357-4366.	2.6	156
130	Growth and properties of Cr-rich thick and porous oxide films on Type 304 stainless steel formed by square wave potential pulse polarisation. Electrochimica Acta, 2001, 47, 543-551.	2.6	44
131	Double Zincate Pretreatment of Sputter-Deposited Al Films. Journal of the Electrochemical Society, 2001, 148, C433.	1.3	26
132	TEM Observation of the Initial Stages of Oxidation on TiAl and TiAl-0.2Zr Intermetallic Compounds. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2000, 64, 502-507.	0.2	0
133	Impedance and photoelectrochemical properties of porous oxide film on Type304 stainless steel formed by square wave potential pulse polarisation. Journal of Electroanalytical Chemistry, 1999, 473, 265-271.	1.9	23
134	Extremely high corrosion resistance of thin film stainless steels deposited by ion beam sputtering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 267, 314-318.	2.6	22
135	The Effect of F- in the HNO3 Passivation Treatment for Improving the Pitting Resistance of Type 304 Stainless Steel. Zairyo To Kankyo/ Corrosion Engineering, 1999, 48, 41-46.	0.0	3
136	Two-Stage HNO3 Passivation Treatment for Improving the Pitting Corrosion Resistance of Type 304 Stainless Steel. Zairyo To Kankyo/ Corrosion Engineering, 1999, 48, 155-161.	0.0	5
137	Modification of Passive Film Formed on an Fe-18Cr Alloy in Sulphuric Acid Solution by Ultra-violet Light Irradiation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 375-382.	0.2	9
138	Formation and Properties of Ti-rich Oxide Layer on Fe-Ti Alloys by Square Wave Potential Pulse Polarization. Electrochemistry, 1999, 67, 1156-1158.	0.6	1
139	Photo Electrochemical Response of Passive Films Formed on Pure CR and Fe-Cr Alloys in Sulphuric Acid Solution. Materials Science Forum, 1998, 289-292, 989-996.	0.3	21
140	Passive Films on Iron Group Metals and Stainless Steel Hyomen Kagaku, 1998, 19, 812-818.	0.0	6
141	Suppression of Pitting Corrosion with Passive Film Modification on Type 304 Stainless Steel by Ultra-Violet Light Irradiation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1998, 62, 527-533.	0.2	5
142	Inhibition of Pit Generation on SUS304 Stainless Steel in Chloride Solution by Ultra-Violet Light Irradiation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1997, 61, 249-250.	0.2	1
143	Corrosion Behaviour of Chromium Implanted Type 304 Stainless Steel. Zairyo To Kankyo/ Corrosion Engineering, 1995, 44, 101-103.	0.0	0
144	The Formation and Properties of a Thick Passive Film on Fe-Cr Alloys with Square Wave Potential Pulse Polarization. Materials Science Forum, 1995, 185-188, 741-748.	0.3	7

#	Article	IF	CITATIONS
145	Disorder and Structural Relaxation in Passive Films on Fe-Cr Alloys. Materials Science Forum, 1995, 185-188, 233-240.	0.3	12
146	The electrochemical conditions for coloured film formation on type 304 stainless steel with square wave polarization. Corrosion Science, 1993, 35, 147-152.	3.0	29
147	Scanning Vibrating Electrode Technique. Zairyo To Kankyo/ Corrosion Engineering, 1993, 42, 797-804.	0.0	2
148	Scanning laser enhanced electrochemical microscopy for characterizing localized corrosion. Corrosion Science, 1991, 32, 669-672.	3.0	1
149	Formation Process of Colored Films on SUS304 Stainless Steel with the Square Wave Potential Pulse Method. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1991, 77, 1192-1197.	0.1	11
150	Stress Corrosion Cracking of SUS316L Stainless Steel in the Chloride Solution Containing Thiosulfate Ion by the Slow Strain Rate Technique. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1991, 77, 1511-1518.	0.1	5
151	Detection of Welded Part of Type 304 Stainless Steel with the Scanning Vibrating Electrode Technique. Corrosion Engineering, 1990, 39, 303-308.	0.1	6
152	The step response function of anodic reaction induced by rapid straining on passive metals. Corrosion Science, 1990, 31, 643-648.	3.0	16
153	Noise Analysis of Corrosion Potential of Type 304 Stainless Steel in MgCl ₂ Solution. Corrosion Engineering, 1989, 38, 155-160.	0.1	0
154	Evaluation of Stress Corrosion Cracking Susceptibility of Type 304 Stainless Steel by Controlled Potential SSRT. Corrosion Engineering, 1988, 37, 138-143.	0.1	1
155	Repassivation Behavior of Newly Created Surface of Pure Nickel in High Temperature and High Pressure Neutral Solution. Transactions of the Japan Institute of Metals, 1987, 28, 224-231.	0.5	7
156	Straining Electrode Behavior of Pure Iron in High Temperature and High Pressure Borate Buffer Solution. Transactions of the Japan Institute of Metals, 1987, 28, 319-326.	0.5	4
157	Straining Electrode Behavior of Fe–Cr and Ni–Cr Alloys in High Temperature and High Pressure Borate Buffer Solution. Transactions of the Japan Institute of Metals, 1987, 28, 424-433.	0.5	8
158	Effect of CaCl2 concentration on the probability distribution of stress corrosion cracking failure time of Type 304 stainless steel Zairyo/Journal of the Society of Materials Science, Japan, 1987, 36, 65-71.	0.1	2
159	Application of the Scanning Vibrating Electrode Technique to Corrosion Fatigue. Corrosion Engineering, 1986, 35, 566-573.	0.1	1
160	Straining Electrode Behavior of Pure Nickel in High Temperature and High Pressure Aqueous Solution Containing Sulphate Ion. Corrosion Engineering, 1986, 35, 276-282.	0.1	3
161	Analysis of Anodic Behavior of Iron Electrode in High Temperature and High Pressure Aqueous Solution by Straining Electrode. Corrosion Engineering, 1985, 34, 72-78.	0.1	5
162	Technical Note:Breakdown of Passivity on Pure Nickel by Sulfate Ion in High Temperature Aqueous Solution. Corrosion, 1985, 41, 177-179.	0.5	5

#	Article	IF	CITATIONS
163	An Experimental Investigation on Characteristics of the New Oscillating-plate Viscometer. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1985, 71, 1490-1496.	0.1	5
164	Straining Electrode Behavior of Pure Iron in High Temperature and High Pressure Aqueous Solution. Transactions of the Japan Institute of Metals, 1984, 25, 553-560.	0.5	3
165	Fabrication of Porous Aluminium and Copper Media by Using Monotectic Solidification under a Magnetic Field. Materials Science Forum, 0, , 289-294.	0.3	1