Dipyaman Ganguly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6121502/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neutrophils Activate Plasmacytoid Dendritic Cells by Releasing Self-DNA–Peptide Complexes in Systemic Lupus Erythematosus. Science Translational Medicine, 2011, 3, 73ra19.	5.8	1,080
2	Self-RNA–antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. Journal of Experimental Medicine, 2009, 206, 1983-1994.	4.2	613
3	The role of dendritic cells in autoimmunity. Nature Reviews Immunology, 2013, 13, 566-577.	10.6	422
4	Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Frontiers in Immunology, 2020, 11, 1949.	2.2	345
5	Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus. Journal of Experimental Medicine, 2014, 211, 1969-1976.	4.2	195
6	TH17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26. Nature Immunology, 2015, 16, 970-979.	7.0	182
7	Cationic antimicrobial peptides in psoriatic skin cooperate to break innate tolerance to selfâ€ÐNA. European Journal of Immunology, 2015, 45, 203-213.	1.6	129
8	Cutting Edge: Piezo1 Mechanosensors Optimize Human T Cell Activation. Journal of Immunology, 2018, 200, 1255-1260.	0.4	109
9	Generation of IL-23 Producing Dendritic Cells (DCs) by Airborne Fungi Regulates Fungal Pathogenicity via the Induction of TH-17 Responses. PLoS ONE, 2010, 5, e12955.	1.1	105
10	Adipose Recruitment and Activation of Plasmacytoid Dendritic Cells Fuel Metaflammation. Diabetes, 2016, 65, 3440-3452.	0.3	89
11	Lactate Induces Pro-tumor Reprogramming in Intratumoral Plasmacytoid Dendritic Cells. Frontiers in Immunology, 2019, 10, 1878.	2.2	85
12	Do Type I Interferons Link Systemic Autoimmunities and Metabolic Syndrome in a Pathogenetic Continuum?. Trends in Immunology, 2018, 39, 28-43.	2.9	54
13	Nucleic acid-containing amyloid fibrils potently induce type I interferon and stimulate systemic autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14550-14555.	3.3	48
14	Nature and Dimensions of Systemic Hyperinflammation and its Attenuation by Convalescent Plasma in Severe COVID-19. Journal of Infectious Diseases, 2021, 224, 565-574.	1.9	48
15	Expression of Concern: Hydroxychavicol, a <i>Piper betle</i> leaf component, induces apoptosis of CML cells through mitochondrial reactive oxygen speciesâ€dependent JNK and endothelial nitric oxide synthase activation and overrides imatinib resistance. Cancer Science, 2012, 103, 88-99.	1.7	45
16	KLK5 induces shedding of DPP4 from circulatory Th17 cells in type 2 diabetes. Molecular Metabolism, 2017, 6, 1529-1539.	3.0	44
17	A phase 2 single center open label randomised control trial for convalescent plasma therapy in patients with severe COVID-19. Nature Communications, 2022, 13, 383.	5.8	39
18	Endocannabinoids in immune regulation and immunopathologies. Immunology, 2021, 164, 242-252.	2.0	35

DIPYAMAN GANGULY

#	Article	IF	CITATIONS
19	Suggestive evidence of association of C-159T functional polymorphism of the CD14 gene with atopic asthma in northern and northwestern Indian populations. Immunogenetics, 2004, 56, 544-547.	1.2	33
20	N-acetyl cysteine enhances imatinib-induced apoptosis of Bcr-Abl+ cells by endothelial nitric oxide synthase-mediated production of nitric oxide. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 298-308.	2.2	33
21	Development and Validation of a Treatment Benefit Index to Identify Hospitalized Patients With COVID-19 Who May Benefit From Convalescent Plasma. JAMA Network Open, 2022, 5, e2147375.	2.8	30
22	Structural Evolution and Translational Potential for Agonists and Antagonists of Endosomal Toll-like Receptors. Journal of Medicinal Chemistry, 2021, 64, 8010-8041.	2.9	25
23	Insights from a Pan India Sero-Epidemiological survey (Phenome-India Cohort) for SARS-CoV2. ELife, 2021, 10, .	2.8	21
24	Granulocyte?macrophage colony-stimulating factor drives monocytes to CD14low�CD83+�DCSIGN?interleukin-10-producing myeloid cells with differential effects on T-cell subsets. Immunology, 2007, 121, 499-507.	2.0	19
25	A Chemical Switch for Transforming a Purine Agonist for Toll-like Receptor 7 to a Clinically Relevant Antagonist. Journal of Medicinal Chemistry, 2020, 63, 4776-4789.	2.9	18
26	Mechanical Cues for T Cell Activation: Role of Piezo1 Mechanosensors. Critical Reviews in Immunology, 2019, 39, 15-38.	1.0	16
27	Activity-guided development of potent and selective toll-like receptor 9 antagonists. European Journal of Medicinal Chemistry, 2018, 159, 187-205.	2.6	15
28	Cutting Edge: Dysregulated Endocannabinoid-Rheostat for Plasmacytoid Dendritic Cell Activation in a Systemic Lupus Endophenotype. Journal of Immunology, 2019, 202, 1674-1679.	0.4	15
29	Systematic Optimization of Potent and Orally Bioavailable Purine Scaffold as a Dual Inhibitor of Toll-Like Receptors 7 and 9. Journal of Medicinal Chemistry, 2021, 64, 9279-9301.	2.9	15
30	The RNase MCPIP3 promotes skin inflammation by orchestrating myeloid cytokine response. Nature Communications, 2021, 12, 4105.	5.8	14
31	Self-Nucleic Acid Sensing: A Novel Crucial Pathway Involved in Obesity-Mediated Metaflammation and Metabolic Syndrome. Frontiers in Immunology, 2020, 11, 624256.	2.2	12
32	Design and development of benzoxazole derivatives with toll-like receptor 9 antagonism. European Journal of Medicinal Chemistry, 2017, 134, 334-347.	2.6	11
33	Plasma Gradient of Soluble Urokinase-Type Plasminogen Activator Receptor Is Linked to Pathogenic Plasma Proteome and Immune Transcriptome and Stratifies Outcomes in Severe COVID-19. Frontiers in Immunology, 2021, 12, 738093.	2.2	11
34	Synthesis and characterization of new potent TLR7 antagonists based on analysis of the binding mode using biomolecular simulations. European Journal of Medicinal Chemistry, 2021, 210, 112978.	2.6	8
35	A machine learning-based approach to determine infection status in recipients of BBV152 (Covaxin) whole-virion inactivated SARS-CoV-2 vaccine for serological surveys. Computers in Biology and Medicine, 2022, 146, 105419.	3.9	8
36	Integration of Ligand-Based and Structure-Based Methods for the Design of Small-Molecule TLR7 Antagonists. Molecules, 2022, 27, 4026.	1.7	4

#	Article	IF	CITATIONS
37	Role of Ca2+ in toll-like receptor 9 activation in human plasmacytoid dendritic cells. Cytokine, 2020, 125, 154822.	1.4	3
38	TLR9 Polymorphisms Might Contribute to the Ethnicity Bias for EBV-Infected Nasopharyngeal Carcinoma. IScience, 2020, 23, 100937.	1.9	2
39	Lipid-Induced Insulin Resistance. , 2018, , 181-191.		0