
Kirill Oskolok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6121158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colorimetry in Chemical Analysis. Journal of Analytical Chemistry, 2018, 73, 1076-1084.	0.9	47
2	Capabilities and prospects of the development of a chromaticity method in analytical chemistry. Journal of Analytical Chemistry, 2015, 70, 1165-1178.	0.9	21
3	Optical molecular analysis using office flatbed photo scanner: New approaches and solutions. Talanta, 2018, 178, 377-383.	5.5	20
4	Multisensory digital colorimetry to identify and determination of active substances in drugs. Sensors and Actuators B: Chemical, 2019, 299, 126909.	7.8	16
5	Determination of Mercury(II) in Drinking Water by Total Reflection X-ray Fluorescence Spectrometry and Liquid–Liquid Microextraction. Analytical Letters, 2018, 51, 2457-2467.	1.8	14
6	Digital Colorimetry: Analytical Possibilities and Prospects of Use. Moscow University Chemistry Bulletin, 2019, 74, 55-62.	0.6	13
7	Molecular Optical Analyzers Based on Smartphones for High School and Universities. Journal of Chemical Education, 2021, 98, 1937-1945.	2.3	11
8	Total Reflection X-Ray Fluorescence Determination of Rare Earth Elements in Mineral Water Using a Combined Preconcentration Technique. Analytical Letters, 2017, 50, 2900-2907.	1.8	8
9	SILCs in oxidative desulfurization: effect of support and heteropolyanion. New Journal of Chemistry, 2020, 44, 6402-6410.	2.8	8
10	Formation of binary and ternary metal deposits on glass–ceramic carbon electrode surfaces: electron-probe X-ray microanalysis, total-reflection X-ray fluorescence analysis, X-ray photoelectron spectroscopy and scanning electron microscopy study. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2003, 58, 735-740.	2.9	7
11	Improved Accuracy of Multicomponent Samples Analysis by X-Ray Fluorescence Using Relative Intensities and Scattered Radiation: A Review. Analytical Letters, 2020, 53, 2685-2699.	1.8	7
12	Total-reflection X-ray fluorescence study of electrochemical deposition of metals on a glass-ceramic carbon electrode surface. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2001, 56, 2117-2126.	2.9	6
13	Influence of heterogeneous surface morphology on analytical signal formation in total reflection x-ray fluorescence analysis. X-Ray Spectrometry, 2002, 31, 235-238.	1.4	6
14	X-ray fluorescence and atomic emission determination of cobalt in water using polyurethane foam sorbents. Moscow University Chemistry Bulletin, 2011, 66, 179-183.	0.6	6
15	Total reflection X-ray fluorescence determination of rare earth elements in mineral water. Moscow University Chemistry Bulletin, 2017, 72, 10-14.	0.6	6
16	Monochromatic model of X-ray fluorescence excitation by polychromatic radiation: New algorithms and analytical applications. Journal of Analytical Chemistry, 2009, 64, 559-565.	0.9	5
17	Direct X-ray fluorescence detection of mercury on polyurethane foam sorbents. Moscow University Chemistry Bulletin, 2012, 67, 78-81.	0.6	5
18	Quantitative X-ray fluorescence analysis of multielemental subjects of complex shape without implementation of reference standards. Moscow University Chemistry Bulletin, 2014, 69, 8-11.	0.6	5

KIRILL OSKOLOK

#	Article	IF	CITATIONS
19	Improving accuracy and capabilities of X-ray fluorescence method using intensity ratios. Nuclear Instruments & Methods in Physics Research B, 2017, 397, 67-74.	1.4	5
20	The use of the ratios of intensities of spectral lines for X-ray fluorescence analysis of metal alloys and oxide materials. Moscow University Chemistry Bulletin, 2017, 72, 49-55.	0.6	5
21	Total reflection X-ray fluorescence analysis of highly mineralized water samples using relative intensities and scattered radiation. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 152, 74-83.	2.9	5
22	Electron probe X-ray microanalysis of glass-ceramic carbon electrode surfaces modified by copper, cadmium and lead electrochemical co-deposition. Journal of Analytical Atomic Spectrometry, 1999, 14, 425-428.	3.0	4
23	Analytical capabilities of a monochromatic model of X-ray fluorescence excitation by inhomogeneous radiation for multi-element subjects. Moscow University Chemistry Bulletin, 2011, 66, 52-58.	0.6	4
24	TXRF determination of mercury(II) in water in combination with liquid–liquid microextraction. Moscow University Chemistry Bulletin, 2017, 72, 174-177.	0.6	4
25	Development of the Method of Calibration Equations for the X-Ray Fluorescence Analysis of Multicomponent Samples in the Presence of Undetectable Elements. Journal of Analytical Chemistry, 2018, 73, 631-640.	0.9	4
26	Features of technogenic metal pollution of roadside soil according to x-ray fluorescence monitoring data. Journal of Soils and Sediments, 2001, 1, 164-167.	3.0	3
27	Determination of the emission spectrum of an X-ray tube of a wavelength-dispersive series X-ray fluorescence spectrometer. Journal of Analytical Chemistry, 2008, 63, 1176-1181.	0.9	3
28	Total Reflection X-Ray Fluorescence Analysis of Natural and Drinking Waters. Journal of Analytical Chemistry, 2018, 73, 1093-1097.	0.9	3
29	Identification and Quantification of Chloramphenicol in Medicines by Multisensory Digital Colorimetry. Moscow University Chemistry Bulletin, 2020, 75, 1-7.	0.6	3
30	μXRF Analysis of XVIII Century Copper Coin: Patina Investigation and "Bronze Disease―Detection. Moscow University Chemistry Bulletin, 2021, 76, 133-136.	0.6	3
31	Total-reflection X-ray fluorescence determination of cobalt and mercury in water using preconcentration on a polyurethane foam sorbent. Moscow University Chemistry Bulletin, 2014, 69, 155-157.	0.6	2
32	Colorimetric and Indirect X-Ray Fluorescence Determination of Drug Substances Using Chemically Modified Polyurethane-Foam Absorbents. Pharmaceutical Chemistry Journal, 2017, 51, 726-730.	0.8	2
33	Using a Molecular Sensor Array with Colorimetric Detection to Identify Active Ingredients in Drug Formulations. Pharmaceutical Chemistry Journal, 2019, 53, 347-352.	0.8	2
34	Digital Colorimetry in Chemical and Pharmaceutical Analysis. Moscow University Chemistry Bulletin, 2022, 77, 61-67.	0.6	2
35	X-ray fluorescence determination of mercury on foam polyurethane sorbent chemically modified by resorcin. Moscow University Chemistry Bulletin, 2015, 70, 52-55.	0.6	1
36	"Jedi sword― A based on laser pointer handheld optical molecular analyzer. Talanta, 2019, 195, 137-141.	5.5	1

KIRILL OSKOLOK

#	Article	IF	CITATIONS
37	MULTISENSORY COLORIMETRIC ANALYSIS OF DRUGS DYDROGESTERONE, TROXERUTIN AND ADEMETIONINE USING BARCODES. Farmatsiya I Farmakologiya, 2021, 9, 64-72.	0.6	1
38	Simultaneous Determination of Two Components of Nickel Silver by Digital Colorimetry. Moscow University Chemistry Bulletin, 2021, 76, 33-37.	0.6	1
39	New approach to the determination of the effective wavelength of the excitation spectrum in standardless X-ray fluorescence analysis of a homogeneous multicomponent object. Moscow University Chemistry Bulletin, 2007, 62, 32-36.	0.6	0
40	Excitation of X-ray fluorescence of thin-film samples by bremsstrahlung: Extension and analytical possibilities of the monochromatic model. Moscow University Chemistry Bulletin, 2008, 63, 207-213.	0.6	0
41	Excitation of X-ray fluorescence of massive samples by bremsstrahlung: Analytical possibilities of the monochromatic model. Moscow University Chemistry Bulletin, 2008, 63, 278-283.	0.6	0
42	Electrochemical monitoring of biogenic microelements. Moscow University Chemistry Bulletin, 2017, 72, 178-182.	0.6	0
43	Digital Colorimetry of Non-steroidal Anti-inflammatory Drugs: Identification Using Principal Component Method, Drug Development and Registration, 2020, 9, 55-59	0.6	0