Florent Di Meo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/612093/publications.pdf

Version: 2024-02-01

42 papers 1,421 citations

411340 20 h-index 37 g-index

47 all docs

47 docs citations

47 times ranked

2622 citing authors

#	Article	IF	CITATIONS
1	Insights into the structure and function of the human organic anion transporter 1 in lipid bilayer membranes. Scientific Reports, 2022, 12, 7057.	1.6	8
2	Effect of CFTR correctors on the traffic and the function of intracellularly retained ABCB4 variants. Liver International, 2021, 41, 1344-1357.	1.9	4
3	GASPâ€1 and GASPâ€2, two closely structurally related proteins with a functional duality in antitrypsin inhibition specificity: a mechanistic point of view. FEBS Journal, 2020, 287, 909-924.	2.2	1
4	Structure and Dynamics of Dioleoyl-Phosphatidylcholine Bilayers under the Influence of Quercetin and Rutin. Langmuir, 2020, 36, 11776-11786.	1.6	6
5	Nitrone-Trolox conjugate as an inhibitor of lipid oxidation: Towards synergistic antioxidant effects. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1489-1501.	1.4	11
6	Deciphering the Peculiar Behavior of \hat{l}^2 -Lapachone in Lipid Monolayers and Bilayers. Langmuir, 2019, 35, 14603-14615.	1.6	5
7	Reactivities of MeO-substituted PBN-type nitrones. New Journal of Chemistry, 2019, 43, 15754-15762.	1.4	6
8	A Novel Nitrone-Trolox Conjugate Inhibits Membrane Lipid Oxidation Through Synergistic Antioxidant Effects. Biophysical Journal, 2019, 116, 227a.	0.2	1
9	Antioxidant-Inspired Drug Discovery: Antitumor Metabolite Is Formed in Situ from a Hydroxycinnamic Acid Derivative upon Free-Radical Scavenging. Journal of Medicinal Chemistry, 2019, 62, 1657-1668.	2.9	25
10	Structural patterns of the human ABCC4/MRP4 exporter in lipid bilayers rationalize clinically observed polymorphisms. Pharmacological Research, 2018, 133, 318-327.	3.1	19
11	Binding Modes and Selectivity of Ruthenium Complexes to Human Telomeric DNA Gâ€Quadruplexes. Chemistry - A European Journal, 2018, 24, 15577-15588.	1.7	13
12	Combining (Non)linear Optical and Fluorescence Analysis of DiD To Enhance Lipid Phase Recognition. Journal of Chemical Theory and Computation, 2018, 14, 5350-5359.	2.3	11
13	Atomistic Picture of Fluorescent Probes with Hydrocarbon Tails in Lipid Bilayer Membranes: An Investigation of Selective Affinities and Fluorescent Anisotropies in Different Environmental Phases. Langmuir, 2018, 34, 9072-9084.	1.6	15
14	Impact of lipid composition and photosensitizer hydrophobicity on the efficiency of light-triggered liposomal release. Physical Chemistry Chemical Physics, 2017, 19, 11460-11473.	1.3	29
15	Role of the Bridging Group in Bisâ€Pyridyl Ligands: Enhancing Both the Photo―and Electroluminescent Features of Cationic (IPr)Cu ^I Complexes. Chemistry - A European Journal, 2017, 23, 16328-16337.	1.7	36
16	Unravelling the immunopathological mechanisms of heavy chain deposition disease with implicationsÂfor clinical management. Kidney International, 2017, 91, 423-434.	2.6	66
17	Chemoenzymatic Preparation and Biophysical Properties of Sulfated Quercetin Metabolites. International Journal of Molecular Sciences, 2017, 18, 2231.	1.8	20
18	In silico pharmacology: Drug membrane partitioning and crossing. Pharmacological Research, 2016, 111, 471-486.	3.1	50

#	Article	IF	Citations
19	Designing NHC–Copper(I) Dipyridylamine Complexes for Blue Light-Emitting Electrochemical Cells. ACS Applied Materials & Designing NHC–Copper(I) Dipyridylamine Complexes for Blue Light-Emitting Electrochemical Cells. ACS Applied Materials & Designing NHC–Copper(I) Dipyridylamine Complexes for Blue Light-Emitting Electrochemical Cells. ACS Applied Materials & Designing NHC–Copper(I) Dipyridylamine Complexes for Blue Light-Emitting Electrochemical Cells. ACS Applied Materials & Designing NHC–Copper(I) Dipyridylamine Complexes for Blue Light-Emitting Electrochemical Cells. ACS Applied Materials & Designing NHC–Copper(I) Dipyridylamine Complexes for Blue Light-Emitting Electrochemical Cells. ACS Applied Materials & Designing NHC–Copper(I) Dipyridylamine Complexes for Blue Light-Emitting Electrochemical Cells. ACS Applied Materials & Designing NHC–Copper(I) Dipyridylamine Complexes for Blue Light-Emitting Electrochemical Cells. ACS Applied Materials & Designing NHC–Copper(I) Dipyridylamine Complexes for Blue Light-Emitting Electrochemical Cells. Accordance (I) Dipyridylamine Complexes for Blue Light-Emitting Electrochemical Cells (I) Dipyridylamine Cells (I) Dipyridylamine Cells (I) Dipyri	4.0	113
20	Consequences of conformational flexibility in hydrogen-bond-driven self-assembly processes. Chemical Communications, 2016, 52, 10870-10873.	2.2	25
21	Dimerization of quercetin, Diels-Alder vs. radical-coupling approach: a joint thermodynamics, kinetics, and topological study. Journal of Molecular Modeling, 2016, 22, 190.	0.8	10
22	Unraveling the performance of dispersion-corrected functionals for the accurate description of weakly bound natural polyphenols. Journal of Molecular Modeling, 2015, 21, 291.	0.8	2
23	DNA Electronic Circular Dichroism on the Inter-Base Pair Scale: An Experimental–Theoretical Case Study of the AT Homo-Oligonucleotide. Journal of Physical Chemistry Letters, 2015, 6, 355-359.	2.1	20
24	Bottom-Up Hierarchical Self-Assembly of Chiral Porphyrins through Coordination and Hydrogen Bonds. Journal of the American Chemical Society, 2015, 137, 15795-15808.	6.6	51
25	Binding modes of a core-extended metalloporphyrin to human telomeric DNA G-quadruplexes. Organic and Biomolecular Chemistry, 2015, 13, 2453-2463.	1.5	36
26	Optical properties of wine pigments: theoretical guidelines with new methodological perspectives. Tetrahedron, 2015, 71, 3079-3088.	1.0	28
27	Stereochemistry and Conformation of Skyllamycin, a Nonâ€Ribosomally Synthesized Peptide from <i>Streptomyces</i> sp. Acta 2897. Chemistry - A European Journal, 2014, 20, 4948-4955.	1.7	25
28	NHC Copper(I) Complexes Bearing Dipyridylamine Ligands: Synthesis, Structural, and Photoluminescent Studies. Inorganic Chemistry, 2014, 53, 9181-9191.	1.9	96
29	<i>cis</i> – <i>trans</i> Isomerization of silybins A and B. Beilstein Journal of Organic Chemistry, 2014, 10, 1047-1063.	1.3	15
30	Tuning color variation in grape anthocyanins at the molecular scale. Food Chemistry, 2013, 141, 4349-4357.	4.2	50
31	Acylglucuronide in alkaline conditions: migration vs. hydrolysis. Journal of Molecular Modeling, 2013, 19, 2423-2432.	0.8	5
32	Antioxidant properties of phenolic Schiff bases: structureâ€"activity relationship and mechanism of action. Journal of Computer-Aided Molecular Design, 2013, 27, 951-964.	1.3	70
33	Ï€-Stacked polyphenolic dimers: A case study using dispersion-corrected methods. Chemical Physics Letters, 2013, 578, 120-125.	1.2	11
34	Free Radical Scavenging by Natural Polyphenols: Atom versus Electron Transfer. Journal of Physical Chemistry A, 2013, 117, 2082-2092.	1.1	224
35	Diastereoselective Synthesis of C ₆₀ /Steroid Conjugates. Journal of Organic Chemistry, 2013, 78, 2819-2826.	1.7	19
36	Regio- and Stereocontrolled Synthesis of Oligostilbenoids: Theoretical Highlights at the Supramolecular Level. Journal of Natural Products, 2013, 76, 538-546.	1.5	15

#	Article	IF	CITATION
37	Application of recent double-hybrid density functionals to low-lying singlet-singlet excitation energies of large organic compounds. Journal of Chemical Physics, 2013, 139, 164104.	1.2	41
38	Influence of a Flavan-3-ol Substituent on the Affinity of Anthocyanins (Pigments) toward Vinylcatechin Dimers and Proanthocyanidins (Copigments). Journal of Physical Chemistry B, 2012, 116, 14089-14099.	1.2	31
39	Highlights on Anthocyanin Pigmentation and Copigmentation: A Matter of Flavonoid π-Stacking Complexation To Be Described by DFT-D. Journal of Chemical Theory and Computation, 2012, 8, 2034-2043.	2.3	71
40	Photoprotective capacities of lichen metabolites: A joint theoretical and experimental study. Journal of Photochemistry and Photobiology B: Biology, 2012, 111, 17-26.	1.7	31
41	$H\hat{a}\in a$ tom acceptor capacity of free radicals used in antioxidant measurements. International Journal of Quantum Chemistry, 2011, 111, 1131-1142.	1.0	20
42	Free Radical Scavenging Properties of Guaiacol Oligomers: A Combined Experimental and Quantum Study of the Guaiacyl-Moiety Role. Journal of Physical Chemistry A, 2009, 113, 13881-13891.	1.1	76