Pibo Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6120880/publications.pdf Version: 2024-02-01

DIRO LIU

#	Article	IF	CITATIONS
1	Synthesis of Bottlebrush Polystyrenes with Uniform, Alternating, and Gradient Distributions of Brushes Via Living Anionic Polymerization and Hydrosilylation. Macromolecular Rapid Communications, 2015, 36, 726-732.	2.0	37
2	Sequence regulation in the living anionic copolymerization of styrene and 1-(4-dimethylaminophenyl)-1-phenylethylene by modification with different additives. Polymer Chemistry, 2017, 8, 1778-1789.	1.9	32
3	Synthesis of sequence-determined bottlebrush polymers based on sequence determination in living anionic copolymerization of styrene and dimethyl(4-(1-phenylvinyl)phenyl)silane. Polymer Chemistry, 2016, 7, 3090-3099.	1.9	28
4	Synchronous Regulation of Periodicity and Monomer Sequence during Living Anionic Copolymerization of Styrene and Dimethyl-[4-(1-phenylvinyl)phenyl]silane (DPE-SiH). Macromolecules, 2018, 51, 3746-3757.	2.2	28
5	The determination of sequence distribution in the living anionic copolymerization of styrene and strong electron-donating DPE derivative-1,1-bis(4-N,N-dimethylanimophenyl)ethylene. Polymer, 2016, 97, 167-173.	1.8	26
6	Investigation of the Lockedâ€Unlocked Mechanism in Living Anionic Polymerization Realized with 1â€(Triâ€isopropoxymethylsilylphenyl)â€1â€phenylethylene. Angewandte Chemie - International Edition, 2018, 16538-16543.	577.2	26
7	Sequence Features of Sequence-Controlled Polymers Synthesized by 1,1-Diphenylethylene Derivatives with Similar Reactivity during Living Anionic Polymerization. Macromolecules, 2018, 51, 5891-5903.	2.2	26
8	Synthesis of a sequence-controlled in-chain alkynyl/tertiary amino dual-functionalized terpolymer <i>via</i> living anionic polymerization. Polymer Chemistry, 2018, 9, 108-120.	1.9	23
9	Facile Synthesis of DendriMac Polymers via the Combination of Living Anionic Polymerization and Highly Efficient Coupling Reactions. Macromolecular Rapid Communications, 2016, 37, 168-173.	2.0	20
10	Facile Synthesis of Inâ€Chain, Multicomponent, Functionalized Polymers via Living Anionic Copolymerization through the Ugi Fourâ€Component Reaction (Ugiâ€4CR). Macromolecular Rapid Communications, 2017, 38, 1700353.	2.0	20
11	Investigation on Synthesis and Application Performance of Elastomers with Biogenic Myrcene. Industrial & Engineering Chemistry Research, 2019, 58, 12845-12853.	1.8	20
12	Strategies for Tailoring LC-Functionalized Polymer: Probe Contribution of [Si–O–Si] versus [Si–C] Spacer to Thermal and Polarized Optical Performance "Driven by―Well-Designed Grafting Density and Precision in Flexible/Rigid Matrix. Macromolecules, 2016, 49, 5350-5365.	2.2	17
13	Assessing the Sequence Specificity in Thermal and Polarized Optical Order of Multiple Sequence-Determined Liquid Crystal Polymers. Macromolecules, 2018, 51, 6209-6217.	2.2	16
14	The investigation on synthesis of periodic polymers with 1,1-diphenylethylene (DPE) derivatives via living anionic polymerization. Polymer, 2019, 169, 95-105.	1.8	15
15	Sequence regulation in living anionic terpolymerization of styrene and two categories of 1,1-diphenylethylene (DPE) derivatives. Polymer Chemistry, 2020, 11, 5163-5172.	1.9	12
16	Effect of Topology and Composition on Liquid Crystal Order and Self-Assembly Performances Driven by Asynchronously Controlled Grafting Density. Macromolecules, 2017, 50, 8334-8345.	2.2	10
17	Regulation of <i>cis</i> and <i>trans</i> microstructures of isoprene units in alternating copolymers <i>via</i> "space-limited―living species in anionic polymerization. Polymer Chemistry, 2020, 11, 2708-2714.	1.9	7
18	The effect of amine-functionalized 1,1-diphenylethylene (DPE) derivatives on end-capping reactions and the simulation of their precision for sequence control. Polymer, 2018, 147, 157-163.	1.8	6

Ріво Liu

#	Article	IF	CITATIONS
19	Investigation of the features of alternating copolymerization of 1,1-bis(4-dimethylsilylphenyl)ethylene and isoprene modified with additive. Polymer, 2019, 184, 121907.	1.8	6
20	Investigation of the features in living anionic polymerization with styrene derivatives containing annular substituents. Polymer Chemistry, 2019, 10, 1140-1149.	1.9	6
21	High <i>trans</i> -Selectivity in Boron-Catalyzed Polymerization of Allylic Arsonium Ylide and its Contribution to Thermal Properties of C3-Polymers. Macromolecules, 2020, 53, 10718-10724.	2.2	5
22	Manipulating Molecular Weight Distributions via "Locked–Unlocked―Anionic Polymerization. Macromolecules, 2021, 54, 8470-8477.	2.2	5
23	Synthesis of monodisperse isomeric oligomers based on <i>meta</i> -/ <i>para</i> - and linear/star-monomer precursors with Ugi–hydrosilylation orthogonal cycles. Polymer Chemistry, 2019, 10, 2758-2763.	1.9	4
24	Investigating the effect of grafting density on the surface properties for sequence-determined fluoropolymer films. Polymer Chemistry, 2020, 11, 6206-6214.	1.9	4
25	Precise construction of polymer brush on a nanosilica surface via the combination of anionic polymerization and Ugi-4CR. Polymer, 2020, 199, 122533.	1.8	4
26	Boron-Catalyzed Polymerization of Phenyl-Substituted Allylic Arsonium Ylides toward Nonconjugated Emissive Materials from C3/C1 Monomeric Units. ACS Macro Letters, 2021, 10, 1287-1294.	2.3	4
27	Study on the Mechanism of a Side Coupling Reaction during the Living Anionic Copolymerization of Styrene and 1-(Ethoxydimethylsilyphenyl)-1-phenylethylene (DPE-SiOEt). Polymers, 2017, 9, 171.	2.0	3
28	Unlocking features of locked-unlocked anionic polymerization. Polymer Chemistry, 2020, 11, 7696-7703.	1.9	3
29	Synthesis of polymeric topological isomers based on sequential Ugi-4CR and thiol–yne click reactions with sequence-controlled amino-functionalized polymers. Polymer Chemistry, 2020, 11, 1970-1984.	1.9	3
30	A multi-functional chromone-modified polyethylene obtained by metal-free C–H activation. Polymer Chemistry, 2022, 13, 1437-1445.	1.9	2
31	Novel Features of 9â€Methyleneâ€9Hâ€thioxanthene (MTAE) in Living Anionic Polymerization. Macromolecular Chemistry and Physics, 2019, 220, 1900052.	1.1	1
32	Investigation on the alternating and gradient anionic copolymerization of 4-methylenethiochromane (META) and isoprene modified with additives. Polymer Journal, 2020, 52, 145-152.	1.3	1
33	Investigation of the Lockedâ€Unlocked Mechanism in Living Anionic Polymerization Realized with 1â€(Triâ€isopropoxymethylsilylphenyl)â€1â€phenylethylene. Angewandte Chemie, 2018, 130, 16776-16781.	1.6	0