Shu Yan Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/612086/publications.pdf Version: 2024-02-01

Shii Yan Yii

#	Article	IF	CITATIONS
1	Microglia secrete miR-146a-5p-containing exosomes to regulate neurogenesis in depression. Molecular Therapy, 2022, 30, 1300-1314.	8.2	68
2	Urolithin A protects dopaminergic neurons in experimental models of Parkinson's disease by promoting mitochondrial biogenesis through the SIRT1/PGC-1α signaling pathway. Food and Function, 2022, 13, 375-385.	4.6	26
3	Urolithin A promotes mitophagy and suppresses NLRP3 inflammasome activation in lipopolysaccharide-induced BV2 microglial cells and MPTP-induced Parkinson's disease model. Neuropharmacology, 2022, 207, 108963.	4.1	53
4	Nâ€acetylcysteine improves diabetic associated erectile dysfunction in streptozotocinâ€induced diabetic mice by inhibiting oxidative stress. Journal of Cellular and Molecular Medicine, 2022, 26, 3527-3537.	3.6	7
5	Agomelatine rescues lipopolysaccharide-induced neural injury and depression-like behaviors via suppression of the Gαi-2-PKA-ASK1 signaling pathway. Journal of Neuroinflammation, 2022, 19, .	7.2	16
6	Neuroprotective effects of microRNAâ€211â€5p on chronic stressâ€induced neuronal apoptosis and depressionâ€like behaviours. Journal of Cellular and Molecular Medicine, 2021, 25, 7028-7038.	3.6	9
7	MicroRNA-26a-3p rescues depression-like behaviors in male rats via preventing hippocampal neuronal anomalies. Journal of Clinical Investigation, 2021, 131, .	8.2	35
8	Hippocampal miR-211-5p regulates neurogenesis and depression-like behaviors in the rat. Neuropharmacology, 2021, 194, 108618.	4.1	12
9	Lipin1 Alleviates Autophagy Disorder in Sciatic Nerve and Improves Diabetic Peripheral Neuropathy. Molecular Neurobiology, 2021, 58, 6049-6061.	4.0	11
10	Prophylactic treatment of curcumin in a rat model of depression by attenuating hippocampal synaptic loss. Food and Function, 2021, 12, 11202-11213.	4.6	10
11	MicroRNA-204-5p reduction in rat hippocampus contributes to stress-induced pathology via targeting RGS12 signaling pathway. Journal of Neuroinflammation, 2021, 18, 243.	7.2	15
12	N-Acetylcysteine Rescues Hippocampal Oxidative Stress-Induced Neuronal Injury via Suppression of p38/JNK Signaling in Depressed Rats. Frontiers in Cellular Neuroscience, 2020, 14, 554613.	3.7	16
13	Lipin1 Is Involved in the Pathogenesis of Diabetic Encephalopathy through the PKD/Limk/Cofilin Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14.	4.0	6
14	Lipin1 mediates cognitive impairment in fld mice via PKD-ERK pathway. Biochemical and Biophysical Research Communications, 2020, 525, 286-291.	2.1	11
15	Ginsenoside-Rg1 Rescues Stress-Induced Depression-Like Behaviors via Suppression of Oxidative Stress and Neural Inflammation in Rats. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-15.	4.0	26
16	Interleukin-6: Its role and mechanisms in rescuing depression-like behaviors in rat models of depression. Brain, Behavior, and Immunity, 2019, 82, 106-121.	4.1	20
17	Chronic Unpredictable Mild Stress in Rats Induces Colonic Inflammation. Frontiers in Physiology, 2019, 10, 1228.	2.8	54
18	COX-2 inhibition rescues depression-like behaviors via suppressing glial activation, oxidative stress and neuronal apoptosis in rats. Neuropharmacology, 2019, 160, 107779.	4.1	37

Shu Yan Yu

#	Article	IF	CITATIONS
19	MiR-134 modulates chronic stress-induced structural plasticity and depression-like behaviors via downregulation of Limk1/cofilin signaling in rats. Neuropharmacology, 2018, 131, 364-376.	4.1	45
20	Neuroprotective Effects of Ginsenoside-Rg1 Against Depression-Like Behaviors via Suppressing Glial Activation, Synaptic Deficits, and Neuronal Apoptosis in Rats. Frontiers in Immunology, 2018, 9, 2889.	4.8	92
21	Hippocampal CA1 \hat{I}^2 CaMKII mediates neuroinflammatory responses via COX-2/PGE2 signaling pathways in depression. Journal of Neuroinflammation, 2018, 15, 338.	7.2	88
22	Curcumin Protects Against Chronic Stress-induced Dysregulation of Neuroplasticity and Depression-like Behaviors via Suppressing IL-1β Pathway in Rats. Neuroscience, 2018, 392, 92-106.	2.3	51
23	Ginsenoside Rg1 Prevents Chronic Stress-Induced Depression-Like Behaviors and Neuronal Structural Plasticity in Rats. Cellular Physiology and Biochemistry, 2018, 48, 2470-2482.	1.6	55
24	Neuroprotective Effects of Curcumin on IL-1β-Induced Neuronal Apoptosis and Depression-Like Behaviors Caused by Chronic Stress in Rats. Frontiers in Cellular Neuroscience, 2018, 12, 516.	3.7	76
25	Ginsenoside Rg1 reverses stressâ€induced depressionâ€like behaviours and brainâ€derived neurotrophic factor expression within the prefrontal cortex. European Journal of Neuroscience, 2016, 44, 1878-1885.	2.6	41
26	Effects of curcumin on chronic, unpredictable, mild, stress-induced depressive-like behaviour and structural plasticity in the lateral amygdala of rats. International Journal of Neuropsychopharmacology, 2014, 17, 793-806.	2.1	93
27	Curcumin ameliorates ethanol-induced memory deficits and enhanced brain nitric oxide synthase activity in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 44, 210-216.	4.8	27
28	Curcumin ameliorates memory deficits via neuronal nitric oxide synthase in aged mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 45, 47-53.	4.8	56
29	NMDA GluN2B receptors involved in the antidepressant effects of curcumin in the forced swim test. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 40, 12-17.	4.8	35
30	Curcumin produces antidepressant effects via activating MAPK/ERK-dependent brain-derived neurotrophic factor expression in the amygdala of mice. Behavioural Brain Research, 2012, 235, 67-72.	2.2	81