Nannan Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6120452/publications.pdf

Version: 2024-02-01

471509 552781 1,539 26 17 26 citations h-index g-index papers 26 26 26 2775 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Electrically Tunable Second Harmonic Generation in Atomically Thin ReS ₂ . ACS Nano, 2022, 16, 6404-6413.	14.6	13
2	Site-selective growth of two-dimensional materials: strategies and applications. Nanoscale, 2022, 14, 9946-9962.	5.6	2
3	Epitaxial growth of large-grain-size ferromagnetic monolayer Crl ₃ for valley Zeeman splitting enhancement. Nanoscale, 2021, 13, 2955-2962.	5.6	5
4	Tunable Linearity of Highâ€Performance Vertical Dualâ€Gate vdW Phototransistors. Advanced Materials, 2021, 33, e2008080.	21.0	36
5	Modulation of electronic and magnetic properties of monolayer chromium trihalides by alloy and strain engineering. Journal of Applied Physics, 2021, 129, 155104.	2.5	3
6	Remote Passivation in Two-Dimensional Materials: The Case of the Monolayer–Bilayer Lateral Junction of MoSe2. Journal of Physical Chemistry Letters, 2021, 12, 8046-8052.	4.6	1
7	Machine Learning Driven Synthesis of Few-Layered WTe ₂ with Geometrical Control. Journal of the American Chemical Society, 2021, 143, 18103-18113.	13.7	30
8	Role of Buffer Layer and Building Unit in the Monolayer Crl ₃ Growth: A First-Principles Perspective. Journal of Physical Chemistry Letters, 2020, 11, 9453-9460.	4.6	10
9	Single-Atom Tungsten-Doped CoP Nanoarrays as a High-Efficiency pH-Universal Catalyst for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 14825-14832.	6.7	73
10	2D lateral heterostructures of group-III monochalcogenide: Potential photovoltaic applications. Applied Physics Letters, 2018, 112, .	3.3	66
11	Growth control, interface behavior, band alignment, and potential device applications of 2D lateral heterostructures. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1353.	14.6	37
12	Tuning the structures of two-dimensional cuprous oxide confined on Au(111). Nano Research, 2018, 11, 5957-5967.	10.4	8
13	Strong Adlayer–Substrate Interactions "Break―the Patching Growth of <i>h</i> -BN onto Graphene on Re(0001). ACS Nano, 2017, 11, 1807-1815.	14.6	27
14	A Ternary Alloy Substrate to Synthesize Monolayer Graphene with Liquid Carbon Precursor. ACS Nano, 2017, 11, 1371-1379.	14.6	21
15	Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations. Scientific Reports, 2017, 7, 41771.	3.3	23
16	Atomistic understanding of the lateral growth of graphene from the edge of an h-BN domain: towards a sharp in-plane junction. Nanoscale, 2017, 9, 3585-3592.	5.6	19
17	Lateral heterostructures of monolayer group-IV monochalcogenides: band alignment and electronic properties. Journal of Materials Chemistry C, 2017, 5, 3788-3795.	5 . 5	94
18	Temperature and coverage effects on the stability of epitaxial silicene on $Ag(111)$ surfaces. Applied Surface Science, 2017, 409, 97-101.	6.1	13

#	Article	IF	CITATION
19	Initial Growth Mechanism of Blue Phosphorene on Au(111) Surface. Journal of Physical Chemistry C, 2017, 121, 17893-17899.	3.1	48
20	Unique Transformation from Graphene to Carbide on Re(0001) Induced by Strong Carbon–Metal Interaction. Journal of the American Chemical Society, 2017, 139, 17574-17581.	13.7	38
21	Rise of silicene: A competitive 2D material. Progress in Materials Science, 2016, 83, 24-151.	32.8	713
22	Possible Formation of Graphyne on Transition Metal Surfaces: A Competition with Graphene from the Chemical Potential Point of View. Journal of Physical Chemistry C, 2016, 120, 14699-14705.	3.1	24
23	Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: from structures to electronic properties. RSC Advances, 2015, 5, 17572-17581.	3.6	183
24	Novel Magnetic Monolayers of Transition Metal Silicide. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1755-1758.	1.8	17
25	Growth mechanism and modification of electronic and magnetic properties of silicene. Chinese Physics B, 2015, 24, 087303.	1.4	5
26	Band gap opening in bilayer silicene by alkali metal intercalation. Journal of Physics Condensed Matter, 2014, 26, 475303.	1.8	30