Samit Chatterjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6120061/publications.pdf Version: 2024-02-01

SAMIT CHATTERIEF

#	Article	IF	CITATIONS
1	A Series of PSMA-Targeted Near-Infrared Fluorescent Imaging Agents. Biomolecules, 2022, 12, 405.	4.0	1
2	An Evaluation of CXCR4 Targeting with PAMAM Dendrimer Conjugates for Oncologic Applications. Pharmaceutics, 2022, 14, 655.	4.5	4
3	NRF2 Activation Promotes Aggressive Lung Cancer and Associates with Poor Clinical Outcomes. Clinical Cancer Research, 2021, 27, 877-888.	7.0	84
4	Mesenchymal stem cells protect against malaria pathogenesis by reprogramming erythropoiesis in the bone marrow. Cell Death Discovery, 2020, 6, 125.	4.7	6
5	Human Cancer Cell Membrane-Coated Biomimetic Nanoparticles Reduce Fibroblast-Mediated Invasion and Metastasis and Induce T-Cells. ACS Applied Materials & Interfaces, 2019, 11, 7850-7861.	8.0	98
6	Development of [¹⁸ F]FPy-WL12 as a PD-L1 Specific PET Imaging Peptide. Molecular Imaging, 2019, 18, 153601211985218.	1.4	52
7	Peptide-based PET quantifies target engagement of PD-L1 therapeutics. Journal of Clinical Investigation, 2019, 129, 616-630.	8.2	94
8	Salicylic Acidâ€Based Polymeric Contrast Agents for Molecular Magnetic Resonance Imaging of Prostate Cancer. Chemistry - A European Journal, 2018, 24, 7235-7242.	3.3	11
9	Low-Level Endogenous PSMA Expression in Nonprostatic Tumor Xenografts Is Sufficient for In Vivo Tumor Targeting and Imaging. Journal of Nuclear Medicine, 2018, 59, 486-493.	5.0	27
10	Peptide-Based ⁶⁸ Ga-PET Radiotracer for Imaging PD-L1 Expression in Cancer. Molecular Pharmaceutics, 2018, 15, 3946-3952.	4.6	102
11	Heterogeneous expression of PD-L1 in pulmonary squamous cell carcinoma and adenocarcinoma: implications for assessment by small biopsy. Modern Pathology, 2017, 30, 530-538.	5.5	92
12	Rapid PD-L1 detection in tumors with PET using a highly specific peptide. Biochemical and Biophysical Research Communications, 2017, 483, 258-263.	2.1	132
13	A PSMA-targeted theranostic agent for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2017, 167, 111-116.	3.8	39
14	Noninvasive Imaging of Immune Checkpoint Ligand PD-L1 in Tumors and Metastases for Guiding Immunotherapy. Molecular Imaging, 2017, 16, 153601211771845.	1.4	47
15	In vivo Evaluation of an Engineered Cyclotide as Specific CXCR4 Imaging Reagent. Chemistry - A European Journal, 2017, 23, 14469-14475.	3.3	25
16	Development of prostate specific membrane antigen targeted ultrasound microbubbles using bioorthogonal chemistry. PLoS ONE, 2017, 12, e0176958.	2.5	14
17	A fully human CXCR4 antibody demonstrates diagnostic utility and therapeutic efficacy in solid tumor xenografts. Oncotarget, 2016, 7, 12344-12358.	1.8	32
18	A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors. Oncotarget, 2016, 7, 10215-10227.	1.8	158

SAMIT CHATTERJEE

#	Article	IF	CITATIONS
19	PD-L1 Detection in Tumors Using [⁶⁴ Cu]Atezolizumab with PET. Bioconjugate Chemistry, 2016, 27, 2103-2110.	3.6	128
20	[¹⁸ F]Fluoroethyl Triazole Substituted PSMA Inhibitor Exhibiting Rapid Normal Organ Clearance. Bioconjugate Chemistry, 2016, 27, 1655-1662.	3.6	15
21	Targeted Imaging of the Atypical Chemokine Receptor 3 (ACKR3/CXCR7) in Human Cancer Xenografts. Journal of Nuclear Medicine, 2016, 57, 981-988.	5.0	28
22	<i>Nrf2</i> reduces allergic asthma in mice through enhanced airway epithelial cytoprotective function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L27-L36.	2.9	65
23	The Intricate Role of CXCR4 in Cancer. Advances in Cancer Research, 2014, 124, 31-82.	5.0	496
24	Mycobacterium tuberculosis Controls MicroRNA-99b (miR-99b) Expression in Infected Murine Dendritic Cells to Modulate Host Immunity. Journal of Biological Chemistry, 2013, 288, 5056-5061.	3.4	146
25	CD4+ T Cell-derived Novel Peptide Thp5 Induces Interleukin-4 Production in CD4+ T Cells to Direct T Helper 2 Cell Differentiation. Journal of Biological Chemistry, 2012, 287, 2830-2835.	3.4	12
26	Mycobacterium tuberculosis Directs T Helper 2 Cell Differentiation by Inducing Interleukin-1β Production in Dendritic Cells. Journal of Biological Chemistry, 2012, 287, 33656-33663.	3.4	41
27	Early secretory antigenic target-6 of Mycobacterium tuberculosis: enigmatic factor in pathogen–host interactions. Microbes and Infection, 2012, 14, 1220-1226.	1.9	7
28	Early Secreted Antigen ESAT-6 of Mycobacterium tuberculosis Promotes Protective T Helper 17 Cell Responses in a Toll-Like Receptor-2-dependent Manner. PLoS Pathogens, 2011, 7, e1002378.	4.7	137