
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6119765/publications.pdf Version: 2024-02-01

Μενι-Ωμιίλι Ζητι

#	Article	IF	CITATIONS
1	Surface Defect Engineering in 2D Nanomaterials for Photocatalysis. Advanced Functional Materials, 2018, 28, 1801983.	7.8	472
2	Controlled Gas Exfoliation of Boron Nitride into Few‣ayered Nanosheets. Angewandte Chemie - International Edition, 2016, 55, 10766-10770.	7.2	271
3	Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids. Chemical Engineering Journal, 2013, 220, 328-336.	6.6	240
4	One-pot extraction combined with metal-free photochemical aerobic oxidative desulfurization in deep eutectic solvent. Green Chemistry, 2015, 17, 2464-2472.	4.6	232
5	Commercially available molybdic compound-catalyzed ultra-deep desulfurization of fuels in ionic liquids. Green Chemistry, 2008, 10, 641.	4.6	214
6	Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic. Chemical Engineering Journal, 2014, 243, 60-67.	6.6	207
7	A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization. Chemical Communications, 2016, 52, 144-147.	2.2	206
8	Taming interfacial electronic properties of platinum nanoparticles on vacancy-abundant boron nitride nanosheets for enhanced catalysis. Nature Communications, 2017, 8, 15291.	5.8	200
9	Oxidative Desulfurization of Fuels Catalyzed by Peroxotungsten and Peroxomolybdenum Complexes in lonic Liquids. Energy & Fuels, 2007, 21, 2514-2516.	2.5	195
10	The selectivity for sulfur removal from oils: An insight from conceptual density functional theory. AICHE Journal, 2016, 62, 2087-2100.	1.8	192
11	Polyoxometalate-based ionic liquids as catalysts for deep desulfurization of fuels. Fuel Processing Technology, 2011, 92, 1842-1848.	3.7	178
12	Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuels. Chemical Engineering Journal, 2013, 229, 250-256.	6.6	174
13	Few-layered graphene-like boron nitride induced a remarkable adsorption capacity for dibenzothiophene in fuels. Green Chemistry, 2015, 17, 1647-1656.	4.6	167
14	Graphene-Analogue Hexagonal BN Supported with Tungsten-based Ionic Liquid for Oxidative Desulfurization of Fuels. ACS Sustainable Chemistry and Engineering, 2015, 3, 186-194.	3.2	167
15	Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride. Green Chemistry, 2009, 11, 810.	4.6	152
16	Boric acid-based ternary deep eutectic solvent for extraction and oxidative desulfurization of diesel fuel. Green Chemistry, 2019, 21, 3074-3080.	4.6	151
17	Heteropolyanion-Based Ionic Liquid for Deep Desulfurization of Fuels in Ionic Liquids. Industrial & Engineering Chemistry Research, 2010, 49, 8998-9003.	1.8	144
18	Tuning the electrophilicity of vanadium-substituted polyoxometalate based ionic liquids for high-efficiency aerobic oxidative desulfurization. Applied Catalysis B: Environmental, 2020, 271, 118936.	10.8	135

#	Article	IF	CITATIONS
19	Novel heterogeneous iron-based redox ionic liquid supported on SBA-15 for deep oxidative desulfurization of fuels. Chemical Engineering Journal, 2015, 266, 213-221.	6.6	130
20	Taming electronic properties of boron nitride nanosheets as metal-free catalysts for aerobic oxidative desulfurization of fuels. Green Chemistry, 2018, 20, 4453-4460.	4.6	128
21	Carbon-doped porous boron nitride: metal-free adsorbents for sulfur removal from fuels. Journal of Materials Chemistry A, 2015, 3, 12738-12747.	5.2	126
22	Synergistic effect of dual BrÃ,nsted acidic deep eutectic solvents for oxidative desulfurization of diesel fuel. Chemical Engineering Journal, 2020, 394, 124831.	6.6	123
23	Space onfined Yolkâ€5hell Construction of Fe ₃ O ₄ Nanoparticles Inside Nâ€Đoped Hollow Mesoporous Carbon Spheres as Bifunctional Electrocatalysts for Longâ€7erm Rechargeable Zinc–Air Batteries. Advanced Functional Materials, 2020, 30, 2005834.	7.8	119
24	Deep Oxidative Desulfurization of Fuels Using Peroxophosphomolybdate Catalysts in Ionic Liquids. Industrial & Engineering Chemistry Research, 2008, 47, 6890-6895.	1.8	118
25	Phosphotungstic Acid Immobilized on Ionic Liquid-Modified SBA-15: Efficient Hydrophobic Heterogeneous Catalyst for Oxidative Desulfurization in Fuel. Industrial & Engineering Chemistry Research, 2014, 53, 19895-19904.	1.8	118
26	Ionic liquid extraction and catalytic oxidative desulfurization of fuels using dialkylpiperidinium tetrachloroferrates catalysts. Chemical Engineering Journal, 2014, 250, 48-54.	6.6	116
27	Deep oxidative desulfurization of fuels by Fenton-like reagent in ionic liquids. Green Chemistry, 2009, 11, 1801.	4.6	115
28	Catalytic oxidative desulfurization with a hexatungstate/aqueous H2O2/ionic liquid emulsion system. Green Chemistry, 2011, 13, 1210.	4.6	115
29	Copper nanoparticles advance electron mobility of graphene-like boron nitride for enhanced aerobic oxidative desulfurization. Chemical Engineering Journal, 2016, 301, 123-131.	6.6	115
30	Synthesis of supported SiW12O40-based ionic liquid catalyst induced solvent-free oxidative deep-desulfurization of fuels. Chemical Engineering Journal, 2016, 288, 608-617.	6.6	113
31	Deep Understanding of Strong Metal Interface Confinement: A Journey of Pd/FeO _{<i>x</i>} Catalysts. ACS Catalysis, 2020, 10, 8950-8959.	5.5	113
32	Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 293, 120182.	10.8	110
33	Boosting aerobic oxidative desulfurization performance in fuel oil via strong metal-edge interactions between Pt and h-BN. Chemical Engineering Journal, 2020, 380, 122526.	6.6	108
34	Catalytic kinetics of oxidative desulfurization with surfactant-type polyoxometalate-based ionic liquids. Fuel Processing Technology, 2013, 106, 70-76.	3.7	106
35	Magnetic mesoporous nanospheres supported phosphomolybdate-based ionic liquid for aerobic oxidative desulfurization of fuel. Journal of Colloid and Interface Science, 2019, 534, 239-247.	5.0	106
36	Rapid gas-assisted exfoliation promises V2O5 nanosheets for high performance lithium-sulfur batteries. Nano Energy, 2020, 67, 104253.	8.2	106

#	Article	IF	CITATIONS
37	Vibrational analysis and formation mechanism of typical deep eutectic solvents: An experimental and theoretical study. Journal of Molecular Graphics and Modelling, 2016, 68, 158-175.	1.3	105
38	One-pot synthesis, characterization and desulfurization of functional mesoporous W-MCM-41 from POM-based ionic liquids. Chemical Engineering Journal, 2014, 243, 386-393.	6.6	104
39	Deep Oxidative Desulfurization of Fuel Oils Catalyzed by Decatungstates in the Ionic Liquid of [Bmim]PF6. Industrial & Engineering Chemistry Research, 2009, 48, 9034-9039.	1.8	102
40	Biomass willow catkin-derived Co ₃ O ₄ /N-doped hollow hierarchical porous carbon microtubes as an effective tri-functional electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 20170-20179.	5.2	102
41	Temperature-responsive ionic liquid extraction and separation of the aromatic sulfur compounds. Fuel, 2015, 140, 590-596.	3.4	100
42	Polyoxometalate-based ionic liquid supported on graphite carbon induced solvent-free ultra-deep oxidative desulfurization of model fuels. Fuel, 2017, 190, 1-9.	3.4	98
43	Decavanadates anchored into micropores of graphene-like boron nitride: Efficient heterogeneous catalysts for aerobic oxidative desulfurization. Fuel, 2018, 230, 104-112.	3.4	97
44	Boron Nitride Mesoporous Nanowires with Doped Oxygen Atoms for the Remarkable Adsorption Desulfurization Performance from Fuels. ACS Sustainable Chemistry and Engineering, 2016, 4, 4457-4464.	3.2	95
45	Sacrificing ionic liquid-assisted anchoring of carbonized polymer dots on perovskite-like PbBiO2Br for robust CO2 photoreduction. Applied Catalysis B: Environmental, 2019, 254, 551-559.	10.8	91
46	Engineering a tandem leaching system for the highly selective recycling of valuable metals from spent Li-ion batteries. Green Chemistry, 2021, 23, 2177-2184.	4.6	91
47	A DFT Study of the Extractive Desulfurization Mechanism by [BMIM] ⁺ [AlCl ₄] ^{â^'} Ionic Liquid. Journal of Physical Chemistry B, 2015, 119, 5995-6009.	1.2	88
48	Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources. Chemical Engineering Journal, 2020, 392, 123731.	6.6	88
49	Synthesis of metal-based ionic liquid supported catalyst and its application in catalytic oxidative desulfurization of fuels. Fuel, 2014, 136, 358-365.	3.4	87
50	Tuning the Chemical Hardness of Boron Nitride Nanosheets by Doping Carbon for Enhanced Adsorption Capacity. ACS Omega, 2017, 2, 5385-5394.	1.6	86
51	Harnessing strong metal–support interactions via a reverse route. Nature Communications, 2020, 11, 3042.	5.8	84
52	Hexagonal boron nitride: A metal-free catalyst for deep oxidative desulfurization of fuel oils. Green Energy and Environment, 2020, 5, 166-172.	4.7	83
53	Fenton-like ionic liquids/H ₂ O ₂ system: one-pot extraction combined with oxidation desulfurization of fuel. RSC Advances, 2012, 2, 658-664.	1.7	81
54	Theoretical evidence of charge transfer interaction between SO ₂ and deep eutectic solvents formed by choline chloride and glycerol. Physical Chemistry Chemical Physics, 2015, 17, 28729-28742.	1.3	80

#	Article	IF	CITATIONS
55	Synthesis of Ionic-Liquid-Based Deep Eutectic Solvents for Extractive Desulfurization of Fuel. Energy & Fuels, 2016, 30, 8164-8170.	2.5	79
56	A large number of low coordinated atoms in boron nitride for outstanding adsorptive desulfurization performance. Green Chemistry, 2016, 18, 3040-3047.	4.6	79
57	Oxidative Desulfurization of Fuels Catalyzed by Fenton‣ike Ionic Liquids at Room Temperature. ChemSusChem, 2011, 4, 399-403.	3.6	78
58	Enhanced Oxygen Activation Achieved by Robust Single Chromium Atom-Derived Catalysts in Aerobic Oxidative Desulfurization. ACS Catalysis, 2022, 12, 8623-8631.	5.5	78
59	Revealing the role of oxygen vacancies in bimetallic PbBiO2Br atomic layers for boosting photocatalytic CO2 conversion. Applied Catalysis B: Environmental, 2020, 277, 119170.	10.8	77
60	Taming Interfacial Oxygen Vacancies of Amphiphilic Tungsten Oxide for Enhanced Catalysis in Oxidative Desulfurization. ACS Sustainable Chemistry and Engineering, 2017, 5, 8930-8938.	3.2	75
61	Synthesis of boron nitride nanosheets with N-defects for efficient tetracycline antibiotics adsorptive removal. Chemical Engineering Journal, 2020, 387, 124138.	6.6	75
62	Dynamically-generated TiO2 active site on MXene Ti3C2: Boosting reactive desulfurization. Chemical Engineering Journal, 2021, 416, 129022.	6.6	73
63	Synthesis of mesoporous WO ₃ /TiO ₂ catalyst and its excellent catalytic performance for the oxidation of dibenzothiophene. New Journal of Chemistry, 2017, 41, 569-578.	1.4	72
64	Polyoxometalate-Based Poly(ionic liquid) as a Precursor for Superhydrophobic Magnetic Carbon Composite Catalysts toward Aerobic Oxidative Desulfurization. ACS Sustainable Chemistry and Engineering, 2019, 7, 15755-15761.	3.2	72
65	Silver Nanoparticle-Decorated Boron Nitride with Tunable Electronic Properties for Enhancement of Adsorption Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 4948-4957.	3.2	71
66	In situ fabrication of hollow silica confined defective molybdenum oxide for enhanced catalytic oxidative desulfurization of diesel fuels. Fuel, 2021, 305, 121470.	3.4	69
67	Insight into the Potassium Poisoning Effect for Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ over Fe/Beta. ACS Catalysis, 2021, 11, 14727-14739.	5.5	69
68	Facile synthesis of amphiphilic polyoxometalate-based ionic liquid supported silica induced efficient performance in oxidative desulfurization. Journal of Molecular Catalysis A, 2015, 406, 23-30.	4.8	66
69	Controllable Fabrication of Tungsten Oxide Nanoparticles Confined in Grapheneâ€Analogous Boron Nitride as an Efficient Desulfurization Catalyst. Chemistry - A European Journal, 2015, 21, 15421-15427.	1.7	63
70	Oxidative desulfurization of fuels promoted by choline chloride-based deep eutectic solvents. Journal of Molecular Catalysis A, 2016, 424, 261-268.	4.8	63
71	Tailoring hydrophobic deep eutectic solvent for selective lithium recovery from the mother liquor of Li2CO3. Chemical Engineering Journal, 2021, 420, 127648.	6.6	63
72	Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2 in ionic liquid. Korean Journal of Chemical Engineering, 2014, 31, 211-217.	1.2	62

#	Article	IF	CITATIONS
73	Graphene-Analogues Boron Nitride Nanosheets Confining Ionic Liquids: A High-Performance Quasi-Liquid Solid Electrolyte. Small, 2016, 12, 3535-3542.	5.2	62
74	Tailoring Nâ€Terminated Defective Edges of Porous Boron Nitride for Enhanced Aerobic Catalysis. Small, 2017, 13, 1701857.	5.2	60
75	Immobilizing Highly Catalytically Molybdenum Oxide Nanoparticles on Graphene-Analogous BN: Stable Heterogeneous Catalysts with Enhanced Aerobic Oxidative Desulfurization Performance. Industrial & Engineering Chemistry Research, 2019, 58, 863-871.	1.8	60
76	Hierarchical porous boron nitride with boron vacancies for improved adsorption performance to antibiotics. Journal of Colloid and Interface Science, 2021, 584, 154-163.	5.0	60
77	Hexagonal boron nitride adsorbent: Synthesis, performance tailoring and applications. Journal of Energy Chemistry, 2020, 40, 99-111.	7.1	59
78	Highâ€performance adsorptive desulfurization by ternary hybrid boron carbon nitride aerogel. AICHE Journal, 2021, 67, e17280.	1.8	58
79	Immobilized fentonâ€like ionic liquid: Catalytic performance for oxidative desulfurization. AICHE Journal, 2013, 59, 4696-4704.	1.8	57
80	Silicotungstic acid immobilized on lamellar hexagonal boron nitride for oxidative desulfurization of fuel components. Fuel, 2018, 213, 12-21.	3.4	55
81	Rapid capture and efficient removal of low-concentration SO2 in simulated flue gas by hypercrosslinked hollow nanotube ionic polymers. Chemical Engineering Journal, 2020, 394, 124859.	6.6	55
82	Green aqueous biphasic systems containing deep eutectic solvents and sodium salts for the extraction of protein. RSC Advances, 2017, 7, 49361-49367.	1.7	53
83	A comparative study of the extractive desulfurization mechanism by Cu(II) and Zn-based imidazolium ionic liquids. Green Energy and Environment, 2019, 4, 38-48.	4.7	53
84	A Janus cobalt nanoparticles and molybdenum carbide decorated N-doped carbon for high-performance overall water splitting. Journal of Colloid and Interface Science, 2021, 583, 614-625.	5.0	53
85	Pt nanoparticles encapsulated on V2O5 nanosheets carriers as efficient catalysts for promoted aerobic oxidative desulfurization performance. Chinese Journal of Catalysis, 2021, 42, 557-562.	6.9	53
86	Hydrophobic mesoporous silica-supported heteropolyacid induced by ionic liquid as a high efficiency catalyst for the oxidative desulfurization of fuel. RSC Advances, 2015, 5, 16847-16855.	1.7	52
87	Magnetic POM-based mesoporous silica for fast oxidation of aromatic sulfur compounds. Fuel, 2017, 209, 545-551.	3.4	52
88	Deep oxidative desulfurization with a microporous hexagonal boron nitride confining phosphotungstic acid catalyst. Journal of Molecular Catalysis A, 2016, 423, 207-215.	4.8	51
89	A simple and cost-effective extractive desulfurization process with novel deep eutectic solvents. RSC Advances, 2016, 6, 30345-30352.	1.7	51
90	Metalâ€free boron nitride adsorbent for ultraâ€deep desulfurization. AICHE Journal, 2017, 63, 3463-3469.	1.8	51

#	Article	IF	CITATIONS
91	3D-printing of integrated spheres as a superior support of phosphotungstic acid for deep oxidative desulfurization of fuel. Journal of Energy Chemistry, 2020, 45, 91-97.	7.1	50
92	Preparation of highly dispersed WO3/few layer g-C3N4 and its enhancement of catalytic oxidative desulfurization activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572, 250-258.	2.3	49
93	Progress in electrochemical lithium ion pumping for lithium recovery. Journal of Energy Chemistry, 2021, 59, 431-445.	7.1	49
94	Sustainable and Convenient Recovery of Valuable Metals from Spent Li-Ion Batteries by a One-Pot Extraction Process. ACS Sustainable Chemistry and Engineering, 2021, 9, 13851-13861.	3.2	49
95	Design of Lewis Acid Centers in Bundlelike Boron Nitride for Boosting Adsorptive Desulfurization Performance. Industrial & Engineering Chemistry Research, 2019, 58, 13303-13312.	1.8	47
96	Supported ionic liquid [Bmim]FeCl ₄ /Am TiO ₂ as an efficient catalyst for the catalytic oxidative desulfurization of fuels. RSC Advances, 2015, 5, 43528-43536.	1.7	45
97	Molybdenum-containing dendritic mesoporous silica spheres for fast oxidative desulfurization in fuel. Inorganic Chemistry Frontiers, 2019, 6, 451-458.	3.0	45
98	Macroporous polystyrene resins as adsorbents for the removal of tetracycline antibiotics from an aquatic environment. Journal of Applied Polymer Science, 2014, 131, .	1.3	44
99	Controlled Gas Exfoliation of Boron Nitride into Few‣ayered Nanosheets. Angewandte Chemie, 2016, 128, 10924-10928.	1.6	44
100	Synthesis of Guanidinium-Based Poly(ionic liquids) with Nonporosity for Highly Efficient SO ₂ Capture from Flue Gas. Industrial & Engineering Chemistry Research, 2021, 60, 5984-5991.	1.8	44
101	Oxidation of Aromatic Sulfur Compounds Catalyzed by Organic Hexacyanoferrates in Ionic Liquids with a Low Concentration of H ₂ O ₂ as an Oxidant. Energy & Fuels, 2014, 28, 2754-2760.	2.5	43
102	TiO ₂ microspheres supported polyoxometalate-based ionic liquids induced catalytic oxidative deep-desulfurization. RSC Advances, 2016, 6, 42402-42412.	1.7	43
103	In-situ synthesis strategy for CoM (MÂ= Fe, Ni, Cu) bimetallic nanoparticles decorated N-doped 1D carbon nanotubes/3D porous carbon for electrocatalytic oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 815, 152470.	2.8	43
104	In situ confinement growth of peasecod-like N-doped carbon nanotubes encapsulate bimetallic FeCu alloy as a bifunctional oxygen reaction cathode electrocatalyst for sustainable energy batteries. Journal of Alloys and Compounds, 2020, 826, 154152.	2.8	43
105	Lattice-Refined Transition-Metal Oxides via Ball Milling for Boosted Catalytic Oxidation Performance. ACS Applied Materials & Interfaces, 2019, 11, 36666-36675.	4.0	42
106	O ₂ Activation and Oxidative Dehydrogenation of Propane on Hexagonal Boron Nitride: Mechanism Revisited. Journal of Physical Chemistry C, 2019, 123, 2256-2266.	1.5	42
107	Solvent-free rapid synthesis of porous CeWO _x by a mechanochemical self-assembly strategy for the abatement of NO _x . Journal of Materials Chemistry A, 2020, 8, 6717-6731.	5.2	42
108	Mechanical exfoliation of boron carbide: A metal-free catalyst for aerobic oxidative desulfurization in fuel. Journal of Hazardous Materials, 2020, 391, 122183.	6.5	41

#	Article	IF	CITATIONS
109	One-pot extraction and aerobic oxidative desulfurization with highly dispersed V ₂ O ₅ /SBA-15 catalyst in ionic liquids. RSC Advances, 2017, 7, 39383-39390.	1.7	40
110	Graphene-like BN@SiO2 nanocomposites as efficient sorbents for solid-phase extraction of Rhodamine B and Rhodamine 6G from food samples. Food Chemistry, 2020, 320, 126666.	4.2	40
111	BN/ZIF-8 derived carbon hybrid materials for adsorptive desulfurization: Insights into adsorptive property and reaction kinetics. Fuel, 2021, 288, 119685.	3.4	40
112	Few‣ayer Boron Nitride with Engineered Nitrogen Vacancies for Promoting Conversion of Polysulfide as a Cathode Matrix for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2019, 25, 8112-8117.	1.7	39
113	Scalable and facile synthesis of V2O5 nanoparticles via ball milling for improved aerobic oxidative desulfurization. Green Energy and Environment, 2021, 6, 169-175.	4.7	39
114	Ionic liquid-supported 3DOM silica for efficient heterogeneous oxidative desulfurization. Inorganic Chemistry Frontiers, 2018, 5, 2478-2485.	3.0	38
115	Amorphous TiO ₂ â€Derived Largeâ€Capacity Lithium Ion Sieve for Lithium Recovery. Chemical Engineering and Technology, 2020, 43, 1784-1791.	0.9	38
116	Tuning electronic properties of boron nitride nanoplate via doping carbon for enhanced adsorptive performance. Journal of Colloid and Interface Science, 2017, 508, 121-128.	5.0	37
117	Aerobic Oxidative Desulfurization by Nanoporous Tungsten Oxide with Oxygen Defects. ACS Applied Nano Materials, 2021, 4, 1085-1093.	2.4	37
118	Boron defect engineering in boron nitride nanosheets with improved adsorptive desulfurization performance. Journal of Industrial and Engineering Chemistry, 2018, 64, 383-389.	2.9	36
119	Boosting photocatalytic degradation of RhB via interfacial electronic effects between Fe-based ionic liquid and g-C3N4. Green Energy and Environment, 2019, 4, 198-206.	4.7	36
120	Magnetic supported ionic liquid catalysts with tunable pore volume for enhanced deep oxidative desulfurization. Journal of Molecular Liquids, 2019, 274, 293-299.	2.3	36
121	Magnesium-regulated oxygen vacancies of cobalt-nickel layered double hydroxide nanosheets for ultrahigh performance asymmetric supercapacitors. Journal of Colloid and Interface Science, 2022, 612, 772-781.	5.0	36
122	Development of novel graphene-like layered hexagonal boron nitride for adsorptive removal of antibiotic gatifloxacin from aqueous solution. Green Chemistry Letters and Reviews, 2014, 7, 330-336.	2.1	35
123	One-Pot Extraction and Oxidative Desulfurization of Fuels with Molecular Oxygen in Low-Cost Metal-Based Ionic Liquids. Energy & Fuels, 2017, 31, 1376-1382.	2.5	35
124	Synthesis of WO3/mesoporous ZrO2 catalyst as a high-efficiency catalyst for catalytic oxidation of dibenzothiophene in diesel. Journal of Materials Science, 2018, 53, 15927-15938.	1.7	35
125	Gas-assisted exfoliation of boron nitride nanosheets enhancing adsorption performance. Ceramics International, 2019, 45, 18838-18843.	2.3	35
126	Construction of 2D-2D V2O5/BNNS nanocomposites for improved aerobic oxidative desulfurization performance. Fuel, 2020, 270, 117498.	3.4	35

#	Article	IF	CITATIONS
127	Theoretical investigation of the interaction between aromatic sulfur compounds and [BMIM]+[FeCl4]â^ ionic liquid in desulfurization: A novel charge transfer mechanism. Journal of Molecular Graphics and Modelling, 2015, 59, 40-49.	1.3	34
128	Reactable ionic liquid in situ-induced synthesis of Fe3O4 nanoparticles modified N-doped hollow porous carbon microtubes for boosting multifunctional electrocatalytic activity. Journal of Alloys and Compounds, 2019, 797, 849-858.	2.8	34
129	Ionic liquid immobilized on magnetic mesoporous microspheres with rough surface: Application as recyclable amphiphilic catalysts for oxidative desulfurization. Applied Surface Science, 2019, 484, 1027-1034.	3.1	34
130	Macroscopic 3D boron nitride monolith for efficient adsorptive desulfurization. Fuel, 2020, 261, 116448.	3.4	34
131	Deep oxidative desulfurization of fuels catalyzed by magnetic Fenton-like hybrid catalysts in ionic liquids. RSC Advances, 2013, 3, 2355.	1.7	33
132	Designing multifunctional SO ₃ H-based polyoxometalate catalysts for oxidative desulfurization in acid deep eutectic solvents. RSC Advances, 2017, 7, 55318-55325.	1.7	33
133	Synthesis of hierarchical porous BCN using ternary deep eutectic solvent as precursor and template for aerobic oxidative desulfurization. Microporous and Mesoporous Materials, 2020, 293, 109788.	2.2	33
134	Synergistic Catalysis of the PtCu Alloy on Ultrathin BN Nanosheets for Accelerated Oxidative Desulfurization. ACS Sustainable Chemistry and Engineering, 2020, 8, 2032-2039.	3.2	33
135	Dispersing TiO ₂ Nanoparticles on Graphite Carbon for an Enhanced Catalytic Oxidative Desulfurization Performance. Industrial & Engineering Chemistry Research, 2020, 59, 18471-18479.	1.8	33
136	Extractive desulfurization of diesel fuel by amide-based type IV deep eutectic solvents. Journal of Molecular Liquids, 2021, 338, 116620.	2.3	33
137	Highly selective separation of lithium with hierarchical porous lithium-ion sieve microsphere derived from MXene. Desalination, 2022, 537, 115847.	4.0	32
138	Novel CNT/PbBiO2Br hybrid materials with enhanced broad spectrum photocatalytic activity toward ciprofloxacin (CIP) degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111901.	2.0	31
139	Commercial Diatomite for Adsorption of Tetracycline Antibiotic from Aqueous Solution. Separation Science and Technology, 2014, 49, 2221-2227.	1.3	30
140	Tailoring Electronic Properties of Porphyrin Manganese on Boron Nitride for Enhancing Aerobic Oxidative Desulfurization at Room Temperature. ACS Sustainable Chemistry and Engineering, 2020, 8, 1015-1022.	3.2	30
141	Atomic-Layered α-V ₂ 0 ₅ Nanosheets Obtained via Fast Gas-Driven Exfoliation for Superior Aerobic Oxidative Desulfurization. Energy & Fuels, 2020, 34, 2612-2616.	2.5	30
142	Fluorine-free strategy for hydroxylated Ti3C2/Ti3AlC2 catalysts with enhanced aerobic oxidative desulfurization and mechanism. Chemical Engineering Journal, 2022, 430, 132950.	6.6	30
143	Fast Oxidative Removal of Refractory Aromatic Sulfur Compounds by a Magnetic Ionic Liquid. Chemical Engineering and Technology, 2014, 37, 36-42.	0.9	29
144	Glucose dehydration to 5-hydroxymethylfurfural in ionic liquid over Cr ³⁺ -modified ion exchange resin. RSC Advances, 2015, 5, 9290-9297.	1.7	29

#	Article	IF	CITATIONS
145	Fabrication and characterization of tungsten-containing mesoporous silica for heterogeneous oxidative desulfurization. Chinese Journal of Catalysis, 2016, 37, 971-978.	6.9	29
146	Superparamagnetic Mo-containing core-shell microspheres for catalytic oxidative desulfurization of fuel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537, 243-249.	2.3	29
147	Boron and Nitride Dual vacancies on Metalâ€Free Oxygen Doping Boron Nitride as Initiating Sites for Deep Aerobic Oxidative Desulfurization. ChemCatChem, 2020, 12, 1734-1742.	1.8	28
148	Metal-organic framework encapsulated high-loaded phosphomolybdic acid: A highly stable catalyst for oxidative desulfurization of 4,6-dimethyldibenzothiophene. Fuel, 2022, 309, 122143.	3.4	28
149	Application of a self-emulsifiable task-specific ionic liquid in oxidative desulfurization of fuels. RSC Advances, 2013, 3, 3893.	1.7	27
150	Graphene-like boron nitride anchored Brönsted acid ionic liquids as metal-free catalyst for advanced oxidation process. Molecular Catalysis, 2017, 436, 53-59.	1.0	27
151	Grapheneâ€analogue molybdenum disulfide for adsorptive removal of tetracycline from aqueous solution: equilibrium, kinetic, and thermodynamic studies. Environmental Progress and Sustainable Energy, 2017, 36, 815-821.	1.3	27
152	Edgeâ€Siteâ€Rich Ordered Macroporous BiOCl Triggers CO Activation for Efficient CO ₂ Photoreduction. Small, 2022, 18, e2105228.	5.2	27
153	Electrochemical lithium ions pump for lithium recovery from brine by using a surface stability Al2O3–ZrO2 coated LiMn2O4 electrode. Journal of Energy Chemistry, 2022, 69, 244-252.	7.1	27
154	Universal strategy engineering grain boundaries for catalytic oxidative desulfurization. Applied Catalysis B: Environmental, 2022, 317, 121714.	10.8	27
155	Phosphomolybdic acid immobilized on ionic liquid-modified hexagonal boron nitride for oxidative desulfurization of fuel. RSC Advances, 2017, 7, 54266-54276.	1.7	26
156	Advanced Overlap Adsorption Model of Few-Layer Boron Nitride for Aromatic Organic Pollutants. Industrial & Engineering Chemistry Research, 2018, 57, 4045-4051.	1.8	26
157	The mechanism of thiophene oxidation on metal-free two-dimensional hexagonal boron nitride. Physical Chemistry Chemical Physics, 2019, 21, 21867-21874.	1.3	26
158	Synthesis of carbon nitride supported amphiphilic phosphotungstic acid based ionic liquid for deep oxidative desulfurization of fuels. Journal of Molecular Liquids, 2020, 308, 113059.	2.3	26
159	An accurate empirical method to predict the adsorption strength for π-orbital contained molecules on two dimensional materials. Journal of Molecular Graphics and Modelling, 2018, 82, 93-100.	1.3	25
160	Catalytic oxidative desulfurization of fuels in acidic deep eutectic solvents with [(C6H13)3P(C14H29)]3PMo12O40 as a catalyst. Petroleum Science, 2018, 15, 841-848.	2.4	25
161	Synthesis of N,O-Doped Porous Graphene from Petroleum Coke for Deep Oxidative Desulfurization of Fuel. Energy & Fuels, 2019, 33, 8302-8311.	2.5	25
162	Tuning interfacial electronic properties of carbon nitride as an efficient catalyst for ultra-deep oxidative desulfurization of fuels. Molecular Catalysis, 2019, 468, 100-108.	1.0	25

#	Article	IF	CITATIONS
163	High-entropy oxide stabilized molybdenum oxide via high temperature for deep oxidative desulfurization. Applied Materials Today, 2020, 20, 100680.	2.3	24
164	Enhanced adsorption performance for antibiotics by alcohol-solvent mediated boron nitride nanosheets. Rare Metals, 2022, 41, 342-352.	3.6	24
165	Phosphomolybdic acid encapsulated in ZIF-8-based porous ionic liquids for reactive extraction desulfurization of fuels. Inorganic Chemistry Frontiers, 2021, 9, 165-178.	3.0	24
166	Structure and catalytic oxidative desulfurization properties of SBA-15 supported silicotungstic acid ionic liquid. Journal of Porous Materials, 2016, 23, 823-831.	1.3	23
167	Gas-exfoliated porous monolayer boron nitride for enhanced aerobic oxidative desulfurization performance. Nanotechnology, 2018, 29, 025604.	1.3	23
168	Extraction combined catalytic oxidation desulfurization of petcoke in ionic liquid under mild conditions. Fuel, 2020, 260, 116200.	3.4	23
169	Heterogenization of homogenous oxidative desulfurization reaction on graphene-like boron nitride with a peroxomolybdate ionic liquid. RSC Advances, 2016, 6, 140-147.	1.7	22
170	H2O2 decomposition mechanism and its oxidative desulfurization activity on hexagonal boron nitride monolayer: A density functional theory study. Journal of Molecular Graphics and Modelling, 2018, 84, 166-173.	1.3	22
171	Unraveling the mechanism of CO ₂ capture and separation by porous liquids. RSC Advances, 2020, 10, 42706-42717.	1.7	22
172	The interaction nature between hollow silica-based porous ionic liquids and CO2: A DFT study. Journal of Molecular Graphics and Modelling, 2020, 100, 107694.	1.3	21
173	Theoretical insights into CO2/N2 selectivity of the porous ionic liquids constructed by ion-dipole interactions. Journal of Molecular Liquids, 2021, 344, 117676.	2.3	21
174	Multiple Promotional Effects of Vanadium Oxide on Boron Nitride for Oxidative Dehydrogenation of Propane. Jacs Au, 2022, 2, 1096-1104.	3.6	20
175	One-pot synthesis of ordered mesoporous silica encapsulated polyoxometalate-based ionic liquids induced efficient desulfurization of organosulfur in fuel. RSC Advances, 2015, 5, 76048-76056.	1.7	19
176	Three-dimensional Ce-MOFs-derived Ce@C-BN nanobundles for adsorptive desulfurization. Applied Surface Science, 2022, 590, 152926.	3.1	19
177	Oxodiperoxo tungsten complex-catalyzed synthesis of adipic acid with hydrogen peroxide. Reaction Kinetics and Catalysis Letters, 2007, 92, 319-327.	0.6	18
178	Amorphous TiO2-supported Keggin-type ionic liquid catalyst catalytic oxidation of dibenzothiophene in diesel. Petroleum Science, 2018, 15, 870-881.	2.4	18
179	Activated boron nitride ultrathin nanosheets for enhanced adsorption desulfurization performance. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 245-252.	2.7	18
180	Few Layer g-C ₃ N ₄ Dispersed Quaternary Phosphonium Ionic Liquid for Highly Efficient Catalytic Oxidative Desulfurization of Fuel. Energy & Fuels, 2020, 34, 12379-12387.	2.5	18

#	Article	IF	CITATIONS
181	Theoretical prediction of the SO2 absorption by hollow silica based porous ionic liquids. Journal of Molecular Graphics and Modelling, 2021, 103, 107788.	1.3	18
182	Efficient and remarkable SO2 capture: A discovery of imidazole-based ternary deep eutectic solvents. Journal of Molecular Liquids, 2021, 330, 115595.	2.3	18
183	Construction of truncated-octahedral LiMn2O4 for battery-like electrochemical lithium recovery from brine. Green Energy and Environment, 2023, 8, 1081-1090.	4.7	18
184	Rational Design of Caprolactam-Based Deep Eutectic Solvents for Extractive Desulfurization of Diesel Fuel and Mechanism Study. ACS Sustainable Chemistry and Engineering, 2022, 10, 4551-4560.	3.2	18
185	Enhanced Oxidative Desulfurization of Dibenzothiophene by Functional Moâ€Containing Mesoporous Silica. Chemical Engineering and Technology, 2015, 38, 117-124.	0.9	17
186	Carbon nitride mediated strong metal–support interactions in a Au/TiO ₂ catalyst for aerobic oxidative desulfurization. Inorganic Chemistry Frontiers, 2020, 7, 1212-1219.	3.0	17
187	Unraveling the effects of O-doping into h-BN on the adsorptive desulfurization performance by DFT calculations. Journal of Environmental Chemical Engineering, 2021, 9, 106463.	3.3	17
188	CTAB-controlled synthesis of phenolic resin-based nanofiber aerogels for highly efficient and reversible SO2 capture. Chemical Engineering Journal, 2022, 431, 133715.	6.6	17
189	Investigation of Amine-Based Ternary Deep Eutectic Solvents for Efficient, Rapid, and Reversible SO ₂ Absorption. Energy & Fuels, 2021, 35, 20406-20410.	2.5	17
190	Crafting of plasmonic Au nanoparticles coupled ultrathin BiOBr nanosheets heterostructure: steering charge transfer for efficient CO2 photoreduction. Green Chemical Engineering, 2022, 3, 157-164.	3.3	17
191	Production of 5â€Hydroxymethylfurfural from Fructose in Ionic Liquid Efficiently Catalyzed by Cr(III)â€Al ₂ O ₃ Catalyst. Chinese Journal of Chemistry, 2014, 32, 434-442.	2.6	16
192	Deep eutectic solvent-induced high-entropy structures in boron nitride for boosted initiation of aerobic oxidative desulfurization of diesel. Applied Surface Science, 2020, 529, 146980.	3.1	16
193	Controllable synthesis of functionalized ordered mesoporous silica by metal-based ionic liquids, and their effective adsorption of dibenzothiophene. RSC Advances, 2014, 4, 40588-40594.	1.7	15
194	Hexacyanoferrateâ€based ionic liquids as Fentonâ€like catalysts for deep oxidative desulfurization of fuels. Applied Organometallic Chemistry, 2016, 30, 753-758.	1.7	15
195	Aerobic oxidative desulfurization via magnetic mesoporous silica-supported tungsten oxide catalysts. Petroleum Science, 2020, 17, 1422-1431.	2.4	15
196	Electronic state tuning over Mo-doped W18O49 ultrathin nanowires with enhanced molecular oxygen activation for desulfurization. Separation and Purification Technology, 2022, 294, 121167.	3.9	15
197	Engineering hollow mesoporous silica supported cobalt molybdate catalyst by dissolution-regrowth strategy for efficiently aerobic oxidative desulfurization. Fuel, 2022, 325, 124755.	3.4	15
198	Preparation of metal ions impregnated polystyrene resins for adsorption of antibiotics contaminants in aquatic environment. Journal of Applied Polymer Science, 2015, 132, .	1.3	14

#	Article	IF	CITATIONS
199	Metalâ€based ionic liquid assisted synthesis of highly dispersed mesoporous Fe(III)/SiO ₂ for enhanced adsorption of antibiotics. Journal of Chemical Technology and Biotechnology, 2019, 94, 3815-3824.	1.6	14
200	Fabrication of oxygen-defective tungsten oxide nanorods for deep oxidative desulfurization of fuel. Petroleum Science, 2018, 15, 849-856.	2.4	13
201	Promoting Pt catalysis for CO oxidation <i>via</i> the Mott–Schottky effect. Nanoscale, 2019, 11, 18568-18574.	2.8	13
202	Engineering Highly Dispersed Pt Species by Defects for Boosting the Reactive Desulfurization Performance. Industrial & amp; Engineering Chemistry Research, 2021, 60, 2828-2837.	1.8	13
203	Binary molten salts mediated defect engineering on hexagonal boron nitride catalyst with long-term stability for aerobic oxidative desulfurization. Applied Surface Science, 2021, 558, 149724.	3.1	13
204	Deep oxidative desulfurization of fuels catalyzed by pristine simple tungstic acid. Reaction Kinetics and Catalysis Letters, 2009, 96, 165-173.	0.6	12
205	Lipophilic decavanadate supported by three-dimensional porous carbon nitride catalyst for aerobic oxidative desulfurization. Molecular Catalysis, 2020, 483, 110709.	1.0	12
206	MOFs derived FeNi3 nanoparticles decorated hollow N-doped carbon rod for high-performance oxygen evolution reaction. Green Energy and Environment, 2022, 7, 423-431.	4.7	12
207	The Tribological Properties of Reduced Graphene Oxide Doped by N and B Species with Different Configurations. ACS Applied Materials & amp; Interfaces, 2020, 12, 29737-29746.	4.0	12
208	Synergistic Effect of Au–Cu Alloy Nanoparticles on TiO ₂ for Efficient Aerobic Catalytic Oxidative Desulfurization. Industrial & Engineering Chemistry Research, 2022, 61, 6292-6300.	1.8	12
209	Supported phosphotungstic-based ionic liquid as an heterogeneous catalyst used in the extractive coupled catalytic oxidative desulfurization in diesel. Research on Chemical Intermediates, 2019, 45, 4315-4334.	1.3	11
210	Theoretical prediction of F-doped hexagonal boron nitride: A promising strategy to enhance the capacity of adsorptive desulfurization. Journal of Molecular Graphics and Modelling, 2020, 101, 107715.	1.3	11
211	Sulfate ionic liquids impregnated 2D boron nitride nanosheets for trace SO2 capture with high capacity and selectivity. Separation and Purification Technology, 2021, 270, 118824.	3.9	11
212	Engineering Dual Oxygen Simultaneously Modified Boron Nitride for Boosting Adsorptive Desulfurization of Fuel. Engineering, 2022, 14, 86-93.	3.2	11
213	Construction of porous disc-like lithium manganate for rapid and selective electrochemical lithium extraction from brine. Chinese Journal of Chemical Engineering, 2023, 54, 316-322.	1.7	11
214	Ag Atom Anchored on Defective Hexagonal Boron Nitride Nanosheets As Single Atom Adsorbents for Enhanced Adsorptive Desulfurization via S-Ag Bonds. Nanomaterials, 2022, 12, 2046.	1.9	11
215	Polyoxometalate-based silica-supported ionic liquids for heterogeneous oxidative desulfurization in fuels. Petroleum Science, 2018, 15, 882-889.	2.4	10
216	Synthesis of amphiphilic peroxophosphomolybdates for oxidative desulfurization of fuels in ionic liquids. Petroleum Science, 2018, 15, 890-897.	2.4	10

#	Article	IF	CITATIONS
217	High-index planes T-Nb2O5 using self-assembly strategy for aerobic oxidative desulfurization in fuels. Fuel, 2022, 307, 121877.	3.4	10
218	Light irradiation induced aerobic oxidative deep-desulfurization of fuel in ionic liquid. RSC Advances, 2015, 5, 99927-99934.	1.7	9
219	Comparative study of halogen-doped (X Cl, Br, I) hexagonal boron nitride: A promising strategy to enhance the capacity of adsorptive desulfurization. Journal of Environmental Chemical Engineering, 2021, 9, 105886.	3.3	9
220	Peroxo-tungsten complex catalysed synthesis of adipic acid and benzoic acid with hydrogen peroxide. Journal of Chemical Research, 2006, 2006, 774-775.	0.6	8
221	Synthesis of porous carbon <i>via</i> a waste tire leavening strategy for adsorptive desulfurization. RSC Advances, 2019, 9, 30575-30580.	1.7	8
222	Synthesis of task-specific ternary deep eutectic solvents for deep desulfurization via reactive extraction. Chemical Engineering and Processing: Process Intensification, 2022, 171, 108754.	1.8	8
223	Heteroatom Bridging Strategy in Carbon-Based Catalysts for Enhanced Oxidative Desulfurization Performance. Inorganic Chemistry, 2022, 61, 633-642.	1.9	8
224	Engineering 3D-printed aqueous colloidal ceramic slurry for direct ink writing. Green Chemical Engineering, 2023, 4, 73-80.	3.3	8
225	Rational design of the carbon doping of hexagonal boron nitride for oxygen activation and oxidative desulfurization. Physical Chemistry Chemical Physics, 2020, 22, 24310-24319.	1.3	7
226	Porous liquids for gas capture, separation, and conversion: Narrowing the knowing-doing gap. Separation and Purification Technology, 2022, 297, 121456.	3.9	7
227	One-pot synthesis and characterization of tungsten-containing meso-ceria with enhanced heterogenous oxidative desulfurization in fuels. RSC Advances, 2016, 6, 68922-68928.	1.7	6
228	Efficient aerobic oxidative desulfurization via three-dimensional ordered macroporous tungsten-titanium oxides. Petroleum Science, 2022, 19, 345-353.	2.4	6
229	N-hydroxyphthalimide anchored on hexagonal boron nitride as a metal-free heterogeneous catalyst for deep oxidative desulfurization. Petroleum Science, 2022, 19, 1382-1389.	2.4	6
230	Photocatalytic oxidative of Keggin-type polyoxometalate ionic liquid for enhanced extractive desulfurization in binary deep eutectic solvents. Chinese Journal of Chemical Engineering, 2022, 44, 205-211.	1.7	6
231	Unveiling the role of high-valent copper cations in the selective catalytic reduction of NOx with NH3 at low temperature. Fuel, 2022, 318, 123607.	3.4	6
232	VO2 uniformly supported by 3D g-C3N4: A highly effective catalyst for deep oxidative desulfurization. Fuel, 2022, 319, 123792.	3.4	6
233	Fabrication of dual-mesoporous silica by triblock copolymers and metal-based ionic liquid: efficient and durable catalyst for oxidative desulfurization in fuel. RSC Advances, 2015, 5, 104322-104329.	1.7	5
234	Fabrication of functional dual-mesoporous silicas by using peroxo-tungstate ionic liquid and their applications in oxidative desulfurization. Journal of Porous Materials, 2015, 22, 1227-1233.	1.3	5

#	Article	IF	CITATIONS
235	Controllable preparation of highly dispersed TiO ₂ nanoparticles for enhanced catalytic oxidation of dibenzothiophene in fuels. Applied Organometallic Chemistry, 2018, 32, e4351.	1.7	5
236	SBA-15 supported molybdenum oxide towards efficient catalytic oxidative desulfurization: effect of calcination temperature of catalysts. Journal of the Chinese Advanced Materials Society, 2018, 6, 44-54.	0.7	5
237	Sizeâ€Dependent Activity of Ironâ€Nickel Oxynitride towards Electrocatalytic Oxygen Evolution. ChemNanoMat, 2019, 5, 883-887.	1.5	5
238	Phosphomolybdic ionic liquid supported hydroxyapatite for heterogeneous oxidative desulfurization of fuels. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	5
239	Defect Engineering on Boron Nitride for O ₂ Activation and Subsequent Oxidative Desulfurization. ChemPhysChem, 2021, 22, 168-177.	1.0	4
240	Partitioning behavior of tetracycline in hydrophobic ionic liquids two-phase systems. Separation Science and Technology, 2015, , 150527095459001.	1.3	3
241	Controllable electronic effect via deep eutectic solvents modification for boosted aerobic oxidative desulfurization. Molecular Catalysis, 2021, 512, 111757.	1.0	3
242	Sustainable preparation of graphene-analogue boron nitride by ball-milling for adsorption of organic pollutants. Chinese Journal of Chemical Engineering, 2022, 42, 73-81.	1.7	3
243	The electronic structure and physicochemical property of boron nitridene. Journal of Molecular Graphics and Modelling, 2020, 94, 107475.	1.3	2
244	Fast heterogeneous oxidative desulfurization of dibenzothiophene from ionic liquids supported urchin-liked meso-silica. Materials Express, 2020, 10, 199-205.	0.2	2
245	Aerobic ultra-deep desulfurization of diesel oil triggered by porous carbon supported organic molecular N-hydroxyphthalimide catalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128455.	2.3	2
246	Insight into the oxidative desulfurization of high-sulfur petroleum coke under mild conditions: a journey of vanadium-substituted Dawson-type phosphotungstic acid. Petroleum Science, 2021, 18, 983.	2.4	1
247	Catalytic oxidation of pentanethiol on basic nitrogen doped carbon hollow spheres derived from waste tires. Petroleum Science, 2022, 19, 1888-1896.	2.4	1
248	Ionic Liquids for Extractive Desulfurization of Fuels. , 2021, , 1-6.		0
249	Facile Construction of Magnetic Ionic Liquid Supported Silica for Aerobic Oxidative Desulfurization in Fuel. Catalysts, 2021, 11, 1496.	1.6	0
250	Interface engineering of quaternary ammonium phosphotungstate for efficient oxidative description of high-sulfur petroleum coke. Petroleum Science and Technology, 2023, 41, 86-103.	0.7	0