
Timothy J Tranbarger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/611964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The acceleration of yellow lupine flower abscission by jasmonates is accompanied by lipid-related events in abscission zone cells. Plant Science, 2022, 316, 111173.	1.7	7
2	EPIP as an abscission promoting agent in the phytohormonal pathway. Plant Physiology and Biochemistry, 2022, 178, 137-145.	2.8	4
3	Multi-scale comparative transcriptome analysis reveals key genes and metabolic reprogramming processes associated with oil palm fruit abscission. BMC Plant Biology, 2021, 21, 92.	1.6	5
4	EPIP-Evoked Modifications of Redox, Lipid, and Pectin Homeostasis in the Abscission Zone of Lupine Flowers. International Journal of Molecular Sciences, 2021, 22, 3001.	1.8	8
5	A Non-Shedding Fruit Elaeis oleifera Palm Reveals Perturbations to Hormone Signaling, ROS Homeostasis, and Hemicellulose Metabolism. Genes, 2021, 12, 1724.	1.0	1
6	Environmental and trophic determinism of fruit abscission and outlook with climate change in tropical regions. Plant-Environment Interactions, 2020, 1, 17-28.	0.7	4
7	The PIP Peptide of INFLORESCENCE DEFICIENT IN ABSCISSION Enhances Populus Leaf and Elaeis guineensis Fruit Abscission. Plants, 2019, 8, 143.	1.6	22
8	Elaeis oleifera (Kunth) Cortés: A neglected palm from the Ecuadorian Amazon. Revista Ecuatoriana De Medicina Y Ciencias Biológicas, 2018, 39, .	0.1	3
9	Improvement of the content in bioaccessible lipophilic micronutrients in raw and processed drumstick leaves (Moringa oleifera Lam.). LWT - Food Science and Technology, 2017, 75, 279-285.	2.5	12
10	Editorial: Plant Organ Abscission: From Models to Crops. Frontiers in Plant Science, 2017, 8, 196.	1.7	15
11	Transcriptome Analysis of Cell Wall and NAC Domain Transcription Factor Genes during Elaeis guineensis Fruit Ripening: Evidence for Widespread Conservation within Monocot and Eudicot Lineages. Frontiers in Plant Science, 2017, 8, 603.	1.7	31
12	Cellular and Pectin Dynamics during Abscission Zone Development and Ripe Fruit Abscission of the Monocot Oil Palm. Frontiers in Plant Science, 2016, 7, 540.	1.7	32
13	A phenotypic test for delay of abscission and non-abscission oil palm fruit and validation by abscission marker gene expression analysis. Acta Horticulturae, 2016, , 97-104.	0.1	7
14	Conservation of the abscission signaling peptide IDA during Angiosperm evolution: withstanding genome duplications and gain and loss of the receptors HAE/HSL2. Frontiers in Plant Science, 2015, 6, 931.	1.7	50
15	Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration. Nature Communications, 2013, 4, 2160.	5.8	62
16	Comparative Transcriptome Analysis of Three Oil Palm Fruit and Seed Tissues That Differ in Oil Content and Fatty Acid Composition. Plant Physiology, 2013, 162, 1337-1358.	2.3	200
17	Temporal and spatial expression of polygalacturonase gene family members reveals divergent regulation during fleshy fruit ripening and abscission in the monocot species oil palm. BMC Plant Biology, 2012, 12, 150.	1.6	55
18	SSR markers in transcripts of genes linked to post-transcriptional and transcriptional regulatory functions during vegetative and reproductive development of Elaeis guineensis. BMC Plant Biology, 2012, 12, 1.	1.6	275

TIMOTHY J TRANBARGER

#	Article	IF	CITATIONS
19	Regulatory Mechanisms Underlying Oil Palm Fruit Mesocarp Maturation, Ripening, and Functional Specialization in Lipid and Carotenoid Metabolism Â. Plant Physiology, 2011, 156, 564-584.	2.3	190
20	Transcriptome analysis during somatic embryogenesis of the tropical monocot Elaeis guineensis: evidence for conserved gene functions in early development. Plant Molecular Biology, 2009, 70, 173-192.	2.0	59
21	Acquisition of callogenic capacity in date palm leaf tissues in response to 2,4-D treatment. Plant Cell, Tissue and Organ Culture, 2009, 99, 35-45.	1.2	32
22	Pluripotent versus totipotent plant stem cells: dependence versus autonomy?. Trends in Plant Science, 2007, 12, 245-252.	4.3	211
23	Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. Planta, 2006, 223, 591-603.	1.6	110
24	Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage. Plant Molecular Biology, 2003, 52, 689-703.	2.0	213
25	Transcription factor genes with expression correlated to nitrate-related root plasticity of Arabidopsis thaliana. Plant, Cell and Environment, 2003, 26, 459-469.	2.8	34
26	Temporal responses ofArabidopsisroot architecture to phosphate starvation: evidence for the involvement of auxin signalling. Plant, Cell and Environment, 2003, 26, 1053-1066.	2.8	135
27	A macro-array-based screening approach to identify transcriptional factors involved in the nitrogen-related root plasticity response ofArabidopsis thaliana. Agronomy for Sustainable Development, 2003, 23, 519-528.	0.8	5
28	Characterization of proteinase activity in stratified Douglas-fir seeds. Tree Physiology, 2001, 21, 625-629.	1.4	10
29	Regulation of NADPH-cytochrome P450 reductase expressed during Douglas-fir germination and seedling development. Plant Molecular Biology, 2000, 44, 141-153.	2.0	5
30	The isolation of a novel metallothionein-related cDNA expressed in somatic and zygotic embryos of Douglas-fir: regulation by ABA, osmoticum, and metal ions. Plant Molecular Biology, 1997, 34, 243-254.	2.0	65
31	Structure and expression of a developmentally regulated cDNA encoding a cysteine protease (pseudotzain) from Douglas fir. Gene, 1996, 172, 221-226.	1.0	28
32	Post-germination-induced and hormonally dependent expression of low-molecular-weight heat shock protein genes in Douglas fir. Plant Molecular Biology, 1996, 30, 1115-1128.	2.0	35
33	Differentially Regulated Gene Sets in Douglas Fir Seeds and Somatic Embryos Forestry Sciences, 1996, , 197-204.	0.4	1
34	The molecular characterization of a set of cDNAs differentially expressed during Douglas-fir germination and early seedling development. Physiologia Plantarum, 1995, 95, 456-464.	2.6	16
35	A new family of lipolytic plant enzymes with members in rice, arabidopsis and maize. FEBS Letters, 1995, 377, 475-480.	1.3	97
36	The molecular characterization of a set of cDNAs differentially expressed during Douglas-fir germination and early seedling development. Physiologia Plantarum, 1995, 95, 456-464.	2.6	3

#	Article	IF	CITATIONS
37	Expression and Accumulation Patterns of Nitrogen-Responsive Lipoxygenase in Soybeans. Plant Physiology, 1993, 103, 457-466.	2.3	24
38	The soybean 94-kilodalton vegetative storage protein is a lipoxygenase that is localized in paraveinal mesophyll cell vacuoles Plant Cell, 1991, 3, 973-987.	3.1	184
39	The Soybean 94-Kilodalton Vegetative Storage Protein Is a Lipoxygenase That Is Localized in Paraveinal Mesophyll Cell Vacuoles. Plant Cell, 1991, 3, 973.	3.1	33