MartÃ-n I GarcÃ-a-Castro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/61194/publications.pdf

Version: 2024-02-01

26 papers 2,029 citations

430754 18 h-index 24 g-index

30 all docs

30 docs citations

30 times ranked

2058 citing authors

#	Article	IF	CITATIONS
1	Ectodermal Wnt Function as a Neural Crest Inducer. Science, 2002, 297, 848-851.	6.0	431
2	Specification of the neural crest occurs during gastrulation and requires Pax7. Nature, 2006, 441, 218-222.	13.7	343
3	Current perspectives of the signaling pathways directing neural crest induction. Cellular and Molecular Life Sciences, 2012, 69, 3715-3737.	2.4	198
4	Analysis of early human neural crest development. Developmental Biology, 2010, 344, 578-592.	0.9	142
5	WNT/ \hat{l}^2 -catenin signaling mediates human neural crest induction via a pre-neural border intermediate. Development (Cambridge), 2016, 143, 398-410.	1.2	136
6	Interactions between Germ Cells and Extracellular Matrix Glycoproteins during Migration and Gonad Assembly in the Mouse Embryo. Journal of Cell Biology, 1997, 138, 471-480.	2.3	113
7	FGF/MAPK signaling is required in the gastrula epiblast for avian neural crest induction. Development (Cambridge), 2012, 139, 289-300.	1.2	82
8	Top-Down Inhibition of BMP Signaling Enables Robust Induction of hPSCs Into Neural Crest in Fully Defined, Xeno-free Conditions. Stem Cell Reports, 2017, 9, 1043-1052.	2.3	73
9	Pax7 Lineage Contributions to the Mammalian Neural Crest. PLoS ONE, 2012, 7, e41089.	1.1	69
10	Specification and formation of the neural crest: Perspectives on lineage segregation. Genesis, 2019, 57, e23276.	0.8	59
11	Molecular mechanisms of neural crest induction. Birth Defects Research Part C: Embryo Today Reviews, 2004, 72, 109-123.	3. 6	55
12	FGF signaling transforms non-neural ectoderm into neural crest. Developmental Biology, 2012, 372, 166-177.	0.9	45
13	FGF Modulates the Axial Identity of Trunk hPSC-Derived Neural Crest but Not the Cranial-Trunk Decision. Stem Cell Reports, 2019, 12, 920-933.	2.3	43
14	Human neural crest induction by temporal modulation of WNT activation. Developmental Biology, 2019, 449, 99-106.	0.9	40
15	Embryonic Pax7-Expressing Progenitors Contribute Multiple Cell Types to the Postnatal Olfactory Epithelium. Journal of Neuroscience, 2010, 30, 9523-9532.	1.7	34
16	SUMOylation of Pax7 is essential for neural crest and muscle development. Cellular and Molecular Life Sciences, 2013, 70, 1793-1806.	2.4	31
17	WNT/ \hat{l}^2 -CATENIN modulates the axial identity of ES derived human neural crest. Development (Cambridge), 2019, 146, .	1.2	29
18	Disrupted ER membrane protein complex–mediated topogenesis drives congenital neural crest defects. Journal of Clinical Investigation, 2020, 130, 813-826.	3.9	26

#	Article	IF	CITATIONS
19	Early specification and development of rabbit neural crest cells. Developmental Biology, 2018, 444, S181-S192.	0.9	23
20	Blastula stage specification of avian neural crest. Developmental Biology, 2020, 458, 64-74.	0.9	21
21	<i>Pax7</i> is regulated by <i>cMyb</i> during early neural crest development through a novel enhancer. Development (Cambridge), 2013, 140, 3691-3702.	1.2	17
22	Distinct molecular profile and restricted stem cell potential defines the prospective human cranial neural crest from embryonic stem cell state. Stem Cell Research, 2020, 49, 102086.	0.3	7
23	RNA-based CRISPR-Mediated Loss-of-Function Mutagenesis in Human Pluripotent Stem Cells. Journal of Molecular Biology, 2020, 432, 3956-3964.	2.0	3
24	Electroporation and in vitro culture of early rabbit embryos. Data in Brief, 2018, 21, 316-320.	0.5	2
25	Human Neural Crest Cells and Stem Cell-Based Models. , 2014, , 395-412.		1
26	Current insights into neural crest cell development and pathologies. , 2021, , 127-137.		0