Eid H Doha

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/6119332/publications.pdf
Version: 2024-02-01

1 collocation approaches. International Journal of Nonlinear Sciences and Numerical Simulation, 2023,

3	Galerkin operational approach for multi-dimensions fractional differential equations. Communications in Nonlinear Science and Numerical Simulation, 2022, 114, 106608.	3.3	11
4	Spectral Galerkin schemes for a class of multi-order fractional pantograph equations. Journal of Computational and Applied Mathematics, 2021, 384, 113157.	2.0	31
5	A unified spectral collocation method for nonlinear systems of multi-dimensional integral equations with convergence analysis. Applied Numerical Mathematics, 2021, 161, 27-45.	2.1	15
6	Computational aspects of fractional Romanovskiâ€"Bessel functions. Computational and Applied Mathematics, 2021, 40, 1.	2.2	5
7	On the rate of convergence of the Legendre spectral collocation method for multi-dimensional nonlinear Volterraâ€"Fredholm integral equations. Communications in Theoretical Physics, 2021, 73, 025002.	2.5	12

On a discrete fractional stochastic GrÃđnwall inequality and its application in the numerical analysis 8 of stochastic FDEs involving a martingale. International Journal of Nonlinear Sciences and Numerical Simulation, 2021, .
9 Fractional Jacobi Galerkin spectral schemes for multi-dimensional time fractional

.
6.1

A numerical treatment of the two-dimensional multi-term time-fractional mixed sub-diffusion and
10 diffusion-wave equation. Communications in Nonlinear Science and Numerical Simulation, 2020, 91,
3.3

10
105445.

> 11 On Romanovskiâ€"Jacobi polynomials and their related approximation results. Numerical Methods for
> Partial Differential Equations, 2020, 36, 1982-2017.
$3.6 \quad 11$

Exponential Jacobi-Galerkin method and its applications to multidimensional problems in unbounded
$2.1 \quad 15$
12 Exponential domains. Applied Numerical Mathematics, 2020, 157, 88-109.
.
15
$1.0 \quad 4$

On the connection coefficients and recurrence relations arising from expansions in series of
13 modified generalized Laguerre polynomials: Applications on a semi-infinite domain. Nonlinear
$2.7 \quad 11$
Engineering, 2019, 8, 318-327.
14 Shifted Jacobi spectral-Galerkin method for solving hyperbolic partial differential equations. Computers and Mathematics With Applications, 2019, 78, 889-904.
2.7

34

15 Modified Galerkin algorithm for solving multitype fractional differential equations. Mathematical
2.3

44 Methods in the Applied Sciences, 2019, 42, 1389-1412.

Shifted Jacobi spectral collocation method with convergence analysis for solving

Two Legendre-Dual-Petrov-Galerkin Algorithms for Solving the Integrated Forms of High Odd-Order
Boundary Value Problems. Scientific World Journal, The, 2014, 2014, 1-11.
2.1

7
47 A Pseudospectral Algorithm for Solving Multipantograph Delay Systems on a Semi-Infinite Interval

Using Legendre Rational Functions. Abstract and Applied Analysis, 2014, 2014, 1-9. \quad| Integrals of Chebyshev polynomials of third and fourth kinds: An application to solution of boundary |
| :--- |
| 48 |
| value problems with polynomial coefficients. Journal of Contemporary Mathematical Analysis, 2014, |
| $49,296-308$. |

50 A new Jacobi spectral collocation method for solving $1+1$ fractional SchrÃ dinger equations and
2.6

46
fractional coupled SchrÃ厅dinger systems. European Physical Journal Plus, 2014, 129, 1.

The operational matrix formulation of the Jacobi tau approximation for space fractional diffusion
3.5

30
equation. Advances in Difference Equations, 2014, 2014, .

A Jacobi collocation approximation for nonlinear coupled viscous Burgersâ $€^{T M}$ equation. Open Physics,
55
56 A Jacobi rational pseudospectral method for Laneâ€"Emden initial value problems arising in
astrophysics on a semi-infinite interval. Computational and Applied Mathematics, 2014, 33, 607-619.
1.3

19

A shifted Jacobi collocation algorithm for wave type equations with non-local conservation
1.7

2 conditions. Open Physics, 2014, 12, .

57 A Chebyshev-Gauss-Radau Scheme For Nonlinear Hyperbolic System Of First Order. Applied Mathematics
and Information Sciences, 2014, 8, 535-544.
0.5

Jacobi rationalâ€"Gauss collocation method for Laneâ€"Emden equations of astrophysical significance.
Nonlinear Analysis: Modelling and Control, 2014, 19, 537-550.
1.6

New algorithms for solving high even-order differential equations using third and fourth
3.8

Chebyshevâ€"Galerkin methods. Journal of Computational Physics, 2013, 236, 563-579.
52

60 Efficient spectral-Petrov-Galerkin methods for third- and fifth-order differential equations using general parameters generalized Jacobi polynomials. Quaestiones Mathematicae, 2013, 36, 15-38.
0.6

46

61	Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau m Open Physics, 2013, 11, .
62	Efficient Jacobi-Gauss collocation method for solving initial value problems of Bratu type. Computational Mathematics and Mathematical Physics, 2013, 53, 1292-1302.
63	Second kind Chebyshev operational matrix algorithm for solving differential equations of Laneâ ϵ "Emden type. New Astronomy, 2013, 23-24, 113-117.

On shifted Jacobi spectral approximations for solving fractional differential equations. Applied
2.2

New spectral-Galerkin algorithms for direct solution of high even-order differential equations using
$65 \quad \begin{aligned} & \text { New spectral-Galerkin algorithms for direct solution of high even-order differential equatio } \\ & \text { symmetric generalized Jacobi polynomials. Collectanea Mathematica, 2013, 64, 373-394. }\end{aligned}$

New Wavelets Collocation Method for Solving Second-Order Multipoint Boundary Value Problems
Using Chebyshev Polynomials of Third and Fourth Kinds. Abstract and Applied Analysis, 2013, 2013, 1-9.
0.7

23
66

A Jacobi Collocation Method for Solving Nonlinear Burgers-Type Equations. Abstract and Applied
$0.7 \quad 7$
$67 \quad \begin{aligned} & \text { Anacobi Collocation Method } \\ & \text { Analysis 2013, 2013, 1-12. }\end{aligned}$
New Spectral Second Kind Chebyshev Wavelets Algorithm for Solving Linear and Nonlinear
68 Second-Order Differential Equations Involving Singular and Bratu Type Equations. Abstract and
0.7

Applied Analysis, 2013, 2013, 1-9.
69 Efficient Solutions of Multidimensional Sixth-Order Boundary Value Problems Using Symmetric
Generalized Jacobi-Galerkin Method. Abstract and Applied Analysis, 2012, 2012, 1-19.
$0.7 \quad 12$

A new Jacobi operational matrix: An application for solving fractional differential equations. Applied
Mathematical Modelling, 2012, 36, 4931-4943.
4.2

252

An efficient direct solver for multidimensional elliptic Robin boundary value problems using a
Legendre spectral-Galerkin method. Computers and Mathematics With Applications, 2012, 64, 558-571.
79 A Jacobi Dual-Petrov-Galerkin Method for Solving Some Odd-Order Ordinary Differential Equations. Abstract and Applied Analysis, 2011, 2011, 1-21. $0.7 \quad 19$
Efficient algorithms for construction of recurrence relations for the expansion and connection 80 coefficients in series of quantum classical orthogonal polynomials. Journal of Advanced Research, 9.5 2
2010, 1, 193-207.Numerical Treatments for Volterra Delay Integro-differential Equations. Computational Methods inApplied Mathematics, 2009, 9, 292-318.
0.8 26
A Jacobi spectral Galerkin method for the integrated forms of fourthâ€order elliptic differentialequations. Numerical Methods for Partial Differential Equations, 2009, 25, 712-739.
49
Efficient spectral ultraspherical-Galerkin algorithms for the direct solution of 2nth-order linear 83 Efficient spectral ultraspherical-Galerkin algorithms for the direct solution of 2 not
4.2 38
84 Jacobi spectral Galerkin method for elliptic Neumann problems. Numerical Algorithms, 2009, 50, 67-91.1.931
Efficient spectral ultraspherical-dual-Petrovâ $\epsilon^{\text {"Galerkin }}$ algorithms for the direct solution of
$85(2 n+1)$ th-order linear differential equations. Mathematics and Computers in Simulation, 2009, 79, 4.4 35
3221-3242.Explicit formulae for the coefficients of integrated expansions of Laguerre and Hermite polynomials1.213and their integrals. Integral Transforms and Special Functions, 2009, 20, 491-503.Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations2.195
Recurrences and explicit formulae for the expansion and connection coefficients in series of

91	Efficient spectral-Galerkin algorithms for direct solution for second-order differential equations using Jacobi polynomials. Numerical Algorithms, 2006, 42, 137-164.	1.9	45
92	Accurate spectral solutions for the parabolic and elliptic partial differential equations by the ultraspherical tau method. Journal of Computational and Applied Mathematics, 2005, 181, 24-45.	2.0	27
93	Efficient algorithms for construction of recurrence relations for the expansion and connection coefficients in series of Al-Salamâ€"Carlitz I polynomials. Journal of Physics A, 2005, 38, 10107-10121.	1.6	4
94	Recurrences and explicit formulae for the expansion and connection coefficients in series of Bessel polynomials. Journal of Physics A, 2004, 37, 8045-8063.	1.6	20
95	On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials. Journal of Physics A, 2004, 37, 657-675.	1.6	85
96	On the connection coefficients and recurrence relations arising from expansions in series of hermite polynomials. Integral Transforms and Special Functions, 2004, 15, 13-29.	1.2	19
97	Explicit Formulae for the Coefficients of Integrated Expansions of Jacobi Polynomials and Their Integrals. Integral Transforms and Special Functions, 2003, 14, 69-86.	1.2	19
98	On the connection coefficients and recurrence relations arising from expansions in series of Laguerre polynomials. Journal of Physics A, 2003, 36, 5449-5462.	1.6	27
99	On the coefficients of differentiated expansions and derivatives of Jacobi polynomials. Journal of Physics A, 2002, 35, 3467-3478.	1.6	44
100	Efficient Spectral-Galerkin Algorithms for Direct Solution of Second-Order Equations Using Ultraspherical Polynomials. SIAM Journal of Scientific Computing, 2002, 24, 548-571.	2.8	63
101	On the coefficients of integrated expansions and integrals of ultraspherical polynomials and their applications for solving differential equations. Journal of Computational and Applied Mathematics, 2002, 139, 275-298.	2.0	27

102 Title is missing!. Analysis in Theory and Applications, 2001, 17, 69-84. 0.0

3

103 The ultraspherical coefficients of the moments of a general-order derivative of an infinitely
differentiable function. Journal of Computational and Applied Mathematics, 1998, 89, 53-72.
2.0

26

104 On the legendre coefficients of the moments of the general order derivative of an infinitely
1.8

9
differentiable function. International Journal of Computer Mathematics, 1995, 56, 107-122.

The first and second kind chebyshev coefficients of the moments for the general order derivative on
1.8

38
105 an infinitely differentiable function. International Journal of Computer Mathematics, 1994, 51, 21-35.

The coefficients of differentiated expansions and derivatives of ultraspherical polynomials.
Computers and Mathematics With Applications, 1991, 21, 115-122.
2.7

61

An accurate solution of parabolic equations by expansion in ultraspherical polynomials. Computers and Mathematics With Applications, 1990, 19, 75-88.

