
Regina Sommer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6119091/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	UV Inactivation, Liquid-Holding Recovery, and Photoreactivation of Escherichia coli O157 and Other Pathogenic Escherichia coli Strains in Water. Journal of Food Protection, 2000, 63, 1015-1020.	0.8	155
2	Calicivirus Inactivation by Nonionizing (253.7-Nanometer-Wavelength [UV]) and Ionizing (Gamma) Radiation. Applied and Environmental Microbiology, 2004, 70, 5089-5093.	1.4	111
3	Performance Characteristics of qPCR Assays Targeting Human- and Ruminant-Associated <i>Bacteroidetes</i> for Microbial Source Tracking across Sixteen Countries on Six Continents. Environmental Science & Technology, 2013, 47, 8548-8556.	4.6	111
4	Spectral Sensitivity of Bacillus subtilis Spores and MS2 Coliphage for Validation Testing of Ultraviolet Reactors for Water Disinfection. Environmental Science & Technology, 2005, 39, 7845-7852.	4.6	103
5	Inactivation of bacteriophages in water by means of non-ionizing (uv-253.7nm) and ionizing (gamma) radiation: a comparative approach. Water Research, 2001, 35, 3109-3116.	5.3	100
6	Quantitative microbial faecal source tracking with sampling guided by hydrological catchment dynamics. Environmental Microbiology, 2008, 10, 2598-2608.	1.8	99
7	Microbiological water quality along the Danube River: Integrating data from two whole-river surveys and a transnational monitoring network. Water Research, 2009, 43, 3673-3684.	5.3	79
8	Global Distribution of Human-Associated Fecal Genetic Markers in Reference Samples from Six Continents. Environmental Science & Technology, 2018, 52, 5076-5084.	4.6	73
9	Escherichia coli and enterococci are sensitive and reliable indicators for human, livestock and wildlife faecal pollution in alpine mountainous water resources. Journal of Applied Microbiology, 2010, 109, no-no.	1.4	64
10	Starved viable but non-culturable (VBNC) Legionella strains can infect and replicate in amoebae and human macrophages. Water Research, 2018, 141, 428-438.	5.3	62
11	A loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Enterococcus spp. in water. Water Research, 2017, 122, 62-69.	5.3	60
12	Multiparametric monitoring of microbial faecal pollution reveals the dominance of human contamination along the whole Danube River. Water Research, 2017, 124, 543-555.	5.3	60
13	Occurrence of human-associated Bacteroidetes genetic source tracking markers in raw and treated wastewater of municipal and domestic origin and comparison to standard and alternative indicators of faecal pollution. Water Research, 2016, 90, 265-276.	5.3	59
14	Hypothesis-Driven Approach for the Identification of Fecal Pollution Sources in Water Resources. Environmental Science & Technology, 2011, 45, 4038-4045.	4.6	57
15	Free-living amoebae (FLA) co-occurring with legionellae in industrial waters. European Journal of Protistology, 2014, 50, 422-429.	0.5	54
16	Effect of UV irradiation (253.7Ânm) on free Legionella and Legionella associated with its amoebae hosts. Water Research, 2014, 67, 299-309.	5.3	46
17	UVC Inactivation of dsDNA and ssRNA Viruses in Water: UV Fluences and a qPCR-Based Approach to Evaluate Decay on Viral Infectivity. Food and Environmental Virology, 2014, 6, 260-268.	1.5	44
18	Clostridium perfringens Is Not Suitable for the Indication of Fecal Pollution from Ruminant Wildlife but Is Associated with Excreta from Nonherbivorous Animals and Human Sewage. Applied and Environmental Microbiology, 2013, 79, 5089-5092.	1.4	40

REGINA SOMMER

#	Article	IF	CITATIONS
19	Spatiotemporal analysis of bacterial biomass and activity to understand surface and groundwater interactions in a highly dynamic riverbank filtration system. Science of the Total Environment, 2018, 627, 450-461.	3.9	36
20	Genotoxic response of Austrian groundwater samples treated under standardized UV (254nm)—disinfection conditions in a combination of three different bioassays. Water Research, 2002, 36, 25-32.	5.3	34
21	Pattern of Salmonella excretion in amphibians and reptiles in a vivarium. International Journal of Hygiene and Environmental Health, 2003, 206, 53-59.	2.1	32
22	Simple lysis of bacterial cells for DNA-based diagnostics using hydrophilic ionic liquids. Scientific Reports, 2019, 9, 13994.	1.6	31
23	Spatiotemporal resolved sampling for the interpretation of micropollutant removal during riverbank filtration. Science of the Total Environment, 2019, 649, 212-223.	3.9	30
24	Measurement of UV radiation using suspensions of microorganisms. Journal of Photochemistry and Photobiology B: Biology, 1999, 53, 1-6.	1.7	29
25	Rapid and Sensitive Quantification of Vibrio cholerae and Vibrio mimicus Cells in Water Samples by Use of Catalyzed Reporter Deposition Fluorescenceln SituHybridization Combined with Solid-Phase Cytometry. Applied and Environmental Microbiology, 2012, 78, 7369-7375.	1.4	29
26	Opening the black box of spring water microbiology from alpine karst aquifers to support proactive drinking water resource management. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1282.	2.8	28
27	UV disinfection and flocculation-chlorination sachets to reduce hepatitis E virus in drinking water. International Journal of Hygiene and Environmental Health, 2016, 219, 405-411.	2.1	25
28	Real-time monitoring of beta-d-glucuronidase activity in sediment laden streams: A comparison of prototypes. Water Research, 2016, 101, 252-261.	5.3	25
29	Environmental Effectors on the Inactivation of Human Adenoviruses in Water. Food and Environmental Virology, 2013, 5, 203-214.	1.5	24
30	QMRAcatch: Humanâ€Associated Fecal Pollution and Infection Risk Modeling for a River/Floodplain Environment. Journal of Environmental Quality, 2016, 45, 1205-1214.	1.0	24
31	Improving the identification of the source of faecal pollution in water using a modelling approach: From multi-source to aged and diluted samples. Water Research, 2020, 171, 115392.	5.3	24
32	Lead in drinking water of Vienna in comparison to other European countries and accordance with recent guidelines. International Journal of Hygiene and Environmental Health, 2002, 205, 399-403.	2.1	23
33	Viability and infectivity of viable but nonculturable Legionella pneumophila strains induced at high temperatures. Water Research, 2019, 158, 268-279.	5.3	23
34	Differential development of Legionella sub-populations during short- and long-term starvation. Water Research, 2018, 141, 417-427.	5.3	22
35	Modelling the interplay of future changes and wastewater management measures on the microbiological river water quality considering safe drinking water production. Science of the Total Environment, 2021, 768, 144278.	3.9	22
36	Attachment and Detachment Behavior of Human Adenovirus and Surrogates in Fine Granular Limestone Aquifer Material. Journal of Environmental Quality, 2015, 44, 1392-1401.	1.0	21

REGINA SOMMER

#	Article	IF	CITATIONS
37	Interaction of Vibrio cholerae non-O1/non-O139 with Copepods, Cladocerans and Competing Bacteria in the Large Alkaline Lake Neusiedler See, Austria. Microbial Ecology, 2011, 61, 496-506.	1.4	20
38	Comparison of three rapid screening methods for Salmonella spp.: â€~MUCAP Test, MicroScreenRLatex and Rambach Agar'. Letters in Applied Microbiology, 1992, 14, 163-166.	1.0	19
39	Disinfection of Drinking Water by UV Irradiation: Basic Principles - Specific Requirements - International Implementations. Ozone: Science and Engineering, 2008, 30, 43-48.	1.4	19
40	Dynamics of V ibrio cholerae abundance in A ustrian saline lakes, assessed with quantitative solidâ€phase cytometry. Environmental Microbiology, 2015, 17, 4366-4378.	1.8	19
41	A Novel Triplex Quantitative PCR Strategy for Quantification of Toxigenic and Nontoxigenic Vibrio cholerae in Aquatic Environments. Applied and Environmental Microbiology, 2015, 81, 3077-3085.	1.4	19
42	Elucidating fecal pollution patterns in alluvial water resources by linking standard fecal indicator bacteria to river connectivity and genetic microbial source tracking. Water Research, 2020, 184, 116132.	5.3	19
43	Automated Sampling Procedures Supported by High Persistence of Bacterial Fecal Indicators and Bacteroidetes Genetic Microbial Source Tracking Markers in Municipal Wastewater during Short-Term Storage at 5°C. Applied and Environmental Microbiology, 2015, 81, 5134-5143.	1.4	18
44	Applicability of solid-phase cytometry and epifluorescence microscopy for rapid assessment of the microbiological quality of dialysis water. Nephrology Dialysis Transplantation, 2011, 26, 3640-3645.	0.4	17
45	Poikilothermic Animals as a Previously Unrecognized Source of Fecal Indicator Bacteria in a Backwater Ecosystem of a Large River. Applied and Environmental Microbiology, 2018, 84, .	1.4	17
46	Bacteriophages as viral indicators for radiation processing of water: a chemical approach. Applied Radiation and Isotopes, 2003, 58, 651-656.	0.7	15
47	Holy springs and holy water: underestimated sources of illness?. Journal of Water and Health, 2012, 10, 349-357.	1.1	15
48	Upscaling Transport of <i>Bacillus subtilis</i> Endospores and Coliphage phiX174 in Heterogeneous Porous Media from the Column to the Field Scale. Environmental Science & Technology, 2021, 55, 11060-11069.	4.6	15
49	PVC-piping promotes growth of Ralstonia pickettii in dialysis water treatment facilities. Water Science and Technology, 2013, 68, 929-933.	1.2	14
50	Optimized methods for Legionella pneumophila release from its Acanthamoeba hosts. BMC Microbiology, 2016, 16, 74.	1.3	14
51	A Complementary Isothermal Amplification Method to the U.S. EPA Quantitative Polymerase Chain Reaction Approach for the Detection of Enterococci in Environmental Waters. Environmental Science & Technology, 2017, 51, 7028-7035.	4.6	12
52	Agricultural and Rural Watersheds. , 2011, , 399-431.		9
53	Identifying Inorganic Turbidity in Water Samples as Potential Loss Factor During Nucleic Acid Extraction: Implications for Molecular Fecal Pollution Diagnostics and Source Tracking. Frontiers in Microbiology, 2021, 12, 660566.	1.5	9
54	Occurrence of Cryptosporidium sp. oocysts in fecal and water samples in Austria. Acta Tropica, 2001, 80, 145-149.	0.9	8

REGINA SOMMER

#	Article	IF	CITATIONS
55	What Means "Dose―in UV-Disinfection with Medium Pressure Lamps?. Ozone: Science and Engineering, 2001, 23, 239-244.	1.4	8
56	Genetic microbial faecal source tracking: rising technology to support future water quality testing and safety management. Osterreichische Wasser- Und Abfallwirtschaft, 2021, 73, 468-481.	0.3	8
57	Does Pumping Volume Affect the Concentration of Micropollutants in Groundwater Samples?. Ground Water Monitoring and Remediation, 2017, 37, 82-88.	0.6	7
58	Genetic Microbial Source Tracking Support QMRA Modeling for a Riverine Wetland Drinking Water Resource. Frontiers in Microbiology, 2021, 12, 668778.	1.5	7
59	Surface Waters and Urban Brown Rats as Potential Sources of Human-Infective Cryptosporidium and Giardia in Vienna, Austria. Microorganisms, 2021, 9, 1596.	1.6	7
60	Assessment of Bacillus subtilis Spores as a Possible Bioindicator for Evaluation of the Microbicidal Efficacy of Radiation Processing of Water. Water Environment Research, 2007, 79, 720-724.	1.3	6
61	Microbiological Water Quality of the Danube River: Status Quo and Future Perspectives. Handbook of Environmental Chemistry, 2014, , 439-468.	0.2	6
62	Enumerating Microorganism Surrogates for Groundwater Transport Studies Using Solid-Phase Cytometry. Water, Air, and Soil Pollution, 2014, 225, 1827.	1.1	6
63	Method to determine the power efficiency of UV disinfection plants and its application to low pressure plants for drinking water. Water Science and Technology: Water Supply, 2017, 17, 947-957.	1.0	5
64	Ten-year monitoring of an ultraviolet disinfection plant for drinking water. Journal of Environmental Engineering and Science, 2015, 10, 34-39.	0.3	4
65	Integrated Strategy to Guide Health-Related Microbial Quality Management at Alpine Karstic Drinking Water Resources. Advances in Karst Science, 2018, , 185-192.	0.3	3
66	Persistent presence of outer membrane epitopes during short- and long-term starvation of five Legionella pneumophila strains. BMC Microbiology, 2018, 18, 75.	1.3	3
67	The influence of the position and spectral sensitivity of sensors on the surveillance of water-disinfection plants with polychromatic ultraviolet radiation. Journal of Environmental Engineering and Science, 2005, 4, S45-S50.	0.3	2
68	The microbiological water quality of Vienna's River Danube section and its associated water bodies. Osterreichische Wasser- Und Abfallwirtschaft, 2017, 69, 76-88.	0.3	2
69	A standardized method to measure the longitudinal UV emittance of low-pressure-lamps in dependence of water temperature. Water Science and Technology: Water Supply, 0, , .	1.0	1
70	Using hydrodynamic and hydraulic modelling to study microbiological water quality issues at aÂbackwater area of the Danube to support decision-making. Osterreichische Wasser- Und Abfallwirtschaft, 2021, 73, 482-489.	0.3	1
71	PERSPECTIVES OF UV DRINKING WATER DISINFECTION. Proceedings of the Water Environment Federation, 2002, 2002, 51-67.	0.0	0
72	From Groundwater to Drinking Water—Microbiology of Karstic Water Resources. , 2022, , .		0

#	Article	IF	CITATIONS
73	From Groundwater to Drinking Water – Current Approaches for Microbial Monitoring and Risk Assessment in Porous Aquifers. , 2022, , .		0