Maria-José Escorihuela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6118867/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Double-scale analysis on the detectability of irrigation signals from remote sensing soil moisture over an area with complex topography in central Italy. Advances in Water Resources, 2022, 161, 104130.	1.7	14
2	lrrigation estimates from space: Implementation of different approaches to model the evapotranspiration contribution within a soil-moisture-based inversion algorithm. Agricultural Water Management, 2022, 265, 107537.	2.4	22
3	Disaggregation of SMAP Soil Moisture at 20 m Resolution: Validation and Sub-Field Scale Analysis. Remote Sensing, 2022, 14, 167.	1.8	6
4	High-Resolution SMAP-Derived Root-Zone Soil Moisture Using an Exponential Filter Model Calibrated per Land Cover Type. Remote Sensing, 2021, 13, 1112.	1.8	9
5	Extending the Spatio-Temporal Applicability of DISPATCH Soil Moisture Downscaling Algorithm: A Study Case Using SMAP, MODIS and Sentinel-3 Data. Frontiers in Environmental Science, 2021, 9, .	1.5	21
6	Detecting and mapping irrigated areas in a Mediterranean environment by using remote sensing soil moisture and a land surface model. Journal of Hydrology, 2021, 596, 126129.	2.3	49
7	A Calibration/Disaggregation Coupling Scheme for Retrieving Soil Moisture at High Spatio-Temporal Resolution: Synergy between SMAP Passive Microwave, MODIS/Landsat Optical/Thermal and Sentinel-1 Radar Data. Sensors, 2021, 21, 7406.	2.1	1
8	Multi-Source Hydrological Data Products to Monitor High Asian River Basins and Regional Water Security. Remote Sensing, 2021, 13, 5122.	1.8	3
9	Exploiting High-Resolution Remote Sensing Soil Moisture to Estimate Irrigation Water Amounts over a Mediterranean Region. Remote Sensing, 2020, 12, 2593.	1.8	48
10	Temporal Calibration of an Evaporation-Based Spatial Disaggregation Method of SMOS Soil Moisture Data. Remote Sensing, 2020, 12, 1671.	1.8	4
11	The Roles of the S3MPC: Monitoring, Validation and Evolution of Sentinel-3 Altimetry Observations. Remote Sensing, 2020, 12, 1763.	1.8	31
12	The Next Generation of L Band Radiometry: User'S Requirements and Technical Solutions. , 2020, , .		3
13	Stepwise Disaggregation of SMAP Soil Moisture at 100 m Resolution Using Landsat-7/8 Data and a Varying Intermediate Resolution. Remote Sensing, 2019, 11, 1863.	1.8	28
14	Mapping Irrigated Areas Using Sentinel-1 Time Series in Catalonia, Spain. Remote Sensing, 2019, 11, 1836.	1.8	65
15	Multisurface Retracker for Swath Processing of Interferometric Radar Altimetry. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 1839-1843.	1.4	3
16	Maize yield estimation in West Africa from crop process-induced combinations of multi-domain remote sensing indices. European Journal of Agronomy, 2019, 108, 11-26.	1.9	81
17	Analysis of Retrackers' Performances and Water Level Retrieval over the Ebro River Basin Using Sentinel-3. Remote Sensing, 2019, 11, 718.	1.8	31
18	Sub-Annual Calving Front Migration, Area Change and Calving Rates from Swath Mode CryoSat-2 Altimetry, on Filchner-Ronne Ice Shelf, Antarctica. Remote Sensing, 2019, 11, 2761.	1.8	11

4

#	Article	IF	CITATIONS
19	SMOS-HR: A High Resolution L-Band Passive Radiometer for Earth Science and Applications. , 2019, , .		16
20	Soil moisture from remote sensing to forecast desert locust presence. Journal of Applied Ecology, 2019, 56, 966-975.	1.9	36
21	Retrieving surface soil moisture at high spatio-temporal resolution from a synergy between Sentinel-1 radar and Landsat thermal data: A study case over bare soil. Remote Sensing of Environment, 2018, 211, 321-337.	4.6	118
22	CryoSat-2 swath interferometric altimetry for mapping ice elevation and elevation change. Advances in Space Research, 2018, 62, 1226-1242.	1.2	55
23	Smos based High Resolution Soil Moisture Estimates for Desert Locust Preventive Management. , 2018, , .		2
24	Irrigation Mapping Using Statistics of Sentinel-1 Time Series. , 2018, , .		1
25	Soil Surface Moisture Estimation Using the Synergy S1/S2 Data. , 2018, , .		0
26	Irrigation Mapping Using Sentinel-1 Time Series at Field Scale. Remote Sensing, 2018, 10, 1495.	1.8	111
27	SMOS based high resolution soil moisture estimates for desert locust preventive management. Remote Sensing Applications: Society and Environment, 2018, 11, 140-150.	0.8	22
28	Estimating the water budget components of irrigated crops: Combining the FAO-56 dual crop coefficient with surface temperature and vegetation index data. Agricultural Water Management, 2018, 208, 120-131.	2.4	37
29	Evaporation-based disaggregation of surface soil moisture data: The dispatch method, the CATDS product and on-going research. , 2017, , .		0
30	Disaggregation of SMOS Soil Moisture to 100 m Resolution Using MODIS Optical/Thermal and Sentinel-1 Radar Data: Evaluation over a Bare Soil Site in Morocco. Remote Sensing, 2017, 9, 1155.	1.8	17
31	Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at 100 m Resolution. Sensors, 2017, 17, 1966.	2.1	199
32	Inland water level retrieval over western africa with radar altimeters. , 2017, , .		0
33	Comparison of two methods for soil moisture mapping at 1KM resolution from Sentinel-1 and MODIS synergy. , 2017, , .		1
34	Comparison of remote sensing and simulated soil moisture datasets in Mediterranean landscapes. Remote Sensing of Environment, 2016, 180, 99-114.	4.6	86
35	Consistency between In Situ, Model-Derived and High-Resolution-Image-Based Soil Temperature Endmembers: Towards a Robust Data-Based Model for Multi-Resolution Monitoring of Crop Evapotranspiration. Remote Sensing, 2015, 7, 10444-10479.	1.8	28

Global maps of roughness parameters from L-band SMOS observations. , 2014, , .

3

#	Article	IF	CITATIONS
37	Correction to "Evaluating an improved parameterization of the soil emission in L-MEB" [Apr 11 1177-1189]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 3200-3200.	2.7	0
38	Self-calibrated evaporation-based disaggregation of SMOS soil moisture: An evaluation study at 3 km and 100 m resolution in Catalunya, Spain. Remote Sensing of Environment, 2013, 130, 25-38.	4.6	163
39	SMOSCAT: Towards operational high resolution Soil Moisture with SMOS. , 2012, , .		1
40	SMOS calibration and validation over the Salar de Uyuni. , 2012, , .		1
41	Evaluating the L-MEB Model From Long-Term Microwave Measurements Over a Rough Field, SMOSREX 2006. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 1458-1467.	2.7	37
42	Characterization of snow pack over Pyrenees using remote sensed data for runoff modeling. Proceedings of SPIE, 2011, , .	0.8	0
43	Evaluating an Improved Parameterization of the Soil Emission in L-MEB. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 1177-1189.	2.7	114
44	The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle. Proceedings of the IEEE, 2010, 98, 666-687.	16.4	1,507
45	Effective soil moisture sampling depth of L-band radiometry: A case study. Remote Sensing of Environment, 2010, 114, 995-1001.	4.6	221
46	Assessing the SMOS Soil Moisture Retrieval Parameters With High-Resolution NAFE'06 Data. IEEE Geoscience and Remote Sensing Letters, 2009, 6, 635-639.	1.4	25
47	Soil moisture retrievals at L-band using a two-step inversion approach (COSMOS/NAFE'05 Experiment). Remote Sensing of Environment, 2009, 113, 1304-1312.	4.6	60
48	Effects of Dew on the Radiometric Signal of a Grass Field at L-Band. IEEE Geoscience and Remote Sensing Letters, 2009, 6, 67-71.	1.4	9
49	Sunglint observations over land from ground and airborne Lâ€band radiometer data. Geophysical Research Letters, 2008, 35, .	1.5	5
50	The CoSMOS L-band experiment in Southeast Australia. , 2007, , .		9
51	A Simple Model of the Bare Soil Microwave Emission at L-Band. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45, 1978-1987.	2.7	108
52	Estimates of surface soil moisture in prairies using L- band passive microwaves. , 2007, , .		3
53	Influence of Bound-Water Relaxation Frequency on Soil Moisture Measurements. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45, 4067-4076.	2.7	23
54	L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields. Remote Sensing of Environment, 2007, 107, 639-655.	4.6	602

#	Article	IF	CITATIONS
55	A new parameterization of the effective temperature for L band radiometry. Geophysical Research Letters, 2006, 33, .	1.5	67
56	Impact of rain interception by vegetation and mulch on the L-band emission of natural grass. Remote Sensing of Environment, 2006, 101, 127-139.	4.6	82
57	SMOSREX: A long term field campaign experiment for soil moisture and land surface processes remote sensing. Remote Sensing of Environment, 2006, 102, 377-389.	4.6	167
58	Soil Moisture Retrievals From Biangular L-Band Passive Microwave Observations. IEEE Geoscience and Remote Sensing Letters, 2004, 1, 277-281.	1.4	50