Kazuya Ichimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/611866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19613-19618.	3.3	1,225
2	Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends in Plant Science, 2002, 7, 301-308.	4.3	1,080
3	The MKK2 Pathway Mediates Cold and Salt Stress Signaling in Arabidopsis. Molecular Cell, 2004, 15, 141-152.	4.5	859
4	Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant Journal, 2000, 24, 655-665.	2.8	561
5	ABA-Activated SnRK2 Protein Kinase is Required for Dehydration Stress Signaling in Arabidopsis. Plant and Cell Physiology, 2002, 43, 1473-1483.	1.5	520
6	HSP90 interacts with RAR1 and SCT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11777-11782.	3.3	440
7	The Mitogen-Activated Protein Kinase Cascade MKK3–MPK6 Is an Important Part of the Jasmonate Signal Transduction Pathway in Arabidopsis. Plant Cell, 2007, 19, 805-818.	3.1	347
8	MEKK1 Is Required for MPK4 Activation and Regulates Tissue-specific and Temperature-dependent Cell Death in Arabidopsis. Journal of Biological Chemistry, 2006, 281, 36969-36976.	1.6	271
9	Calmodulin-Dependent Activation of MAP Kinase for ROS Homeostasis in Arabidopsis. Molecular Cell, 2011, 41, 649-660.	4.5	243
10	Negative Regulation of PAMP-Triggered Immunity by an E3 Ubiquitin Ligase Triplet in Arabidopsis. Current Biology, 2008, 18, 1396-1401.	1.8	241
11	Harpin Induces Activation of the Arabidopsis Mitogen-Activated Protein Kinases AtMPK4 and AtMPK6. Plant Physiology, 2001, 126, 1579-1587.	2.3	223
12	Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. EMBO Journal, 2002, 21, 6483-6493.	3.5	213
13	The Ubiquitin Ligase PUB22 Targets a Subunit of the Exocyst Complex Required for PAMP-Triggered Responses in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 4703-4716.	3.1	205
14	The <i>Arabidopsis</i> <scp>CERK</scp> 1â€associated kinase <scp>PBL</scp> 27 connects chitin perception to <scp>MAPK</scp> activation. EMBO Journal, 2016, 35, 2468-2483.	3.5	202
15	Environmental stress response in plants: the role of mitogen-activated protein kinases. Trends in Biotechnology, 1997, 15, 15-19.	4.9	193
16	Isolation of ATMEKK1 (a MAP Kinase Kinase Kinase)-Interacting Proteins and Analysis of a MAP Kinase Cascade inArabidopsis. Biochemical and Biophysical Research Communications, 1998, 253, 532-543.	1.0	182
17	Oxidative Stress Activates ATMPK6, an Arabidopsis Homologue of MAP Kinase. Plant and Cell Physiology, 2001, 42, 1012-1016.	1.5	167
18	ldentification of a possible MAP kinase cascade inArabidopsis thalianabased on pairwise yeast two-hybrid analysis and functional complementation tests of yeast mutants. FEBS Letters, 1998, 437, 56-60.	1.3	102

Kazuya Ichimura

#	Article	IF	CITATIONS
19	Fusarium Phytotoxin Trichothecenes Have an Elicitor-Like Activity in Arabidopsis thaliana, but the Activity Differed Significantly Among Their Molecular Species. Molecular Plant-Microbe Interactions, 2006, 19, 512-520.	1.4	88
20	Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley. Current Biology, 2016, 26, 775-781.	1.8	85
21	d-Psicose induces upregulation of defense-related genes and resistance in rice against bacterial blight. Journal of Plant Physiology, 2011, 168, 1852-1857.	1.6	51
22	MAP Kinase Cascades in Arabidopsis: Their Roles in Stress and Hormone Responses. Results and Problems in Cell Differentiation, 2000, 27, 29-38.	0.2	45
23	The rare sugar d-allose acts as a triggering molecule of rice defence via ROS generation. Journal of Experimental Botany, 2013, 64, 4939-4951.	2.4	43
24	Molecular responses to water stress inArabidopsis thaliana. Journal of Plant Research, 1998, 111, 345-351.	1.2	41
25	Disruption of the MAMP-Induced MEKK1-MKK1/MKK2-MPK4 Pathway Activates the TNL Immune Receptor SMN1/RPS6. Plant and Cell Physiology, 2019, 60, 778-787.	1.5	37
26	Phosphorylation of d-allose by hexokinase involved in regulation of OsABF1 expression for growth inhibition in Oryza sativa L. Planta, 2013, 237, 1379-1391.	1.6	28
27	Isolation and characterization ofNeurospora crassanucleoside diphosphate kinase NDK-1. FEBS Journal, 1999, 266, 709-714.	0.2	25
28	Rare sugar d-allose suppresses gibberellin signaling through hexokinase-dependent pathway in Oryza sativa L Planta, 2011, 234, 1083-1095.	1.6	22
29	The rare sugar d-tagatose protects plants from downy mildews and is a safe fungicidal agrochemical. Communications Biology, 2020, 3, 423.	2.0	21
30	Arabidopsis SMN2/HEN2, Encoding DEAD-Box RNA Helicase, Governs Proper Expression of the Resistance Gene SMN1/RPS6 and Is Involved in Dwarf, Autoimmune Phenotypes of mekk1 and mpk4 Mutants. Plant and Cell Physiology, 2020, 61, 1507-1516.	1.5	21
31	Evaluation of various cultivars of Actinidia species and breeding source Actinidia rufa for resistance to Pseudomonas syringae pv. actinidiae biovar 3. Journal of General Plant Pathology, 2018, 84, 399-406.	0.6	16
32	Role of the Pathotype-Specific <i>ACRTS1</i> Gene Encoding a Hydroxylase Involved in the Biosynthesis of Host-Selective ACR-Toxin in the Rough Lemon Pathotype of <i>Alternaria alternata</i> . Phytopathology, 2012, 102, 741-748.	1.1	15
33	ATMRK1, an Arabidopsis protein kinase related to mammal mixed-lineage kinases and Raf protein kinases. Plant Science, 1997, 130, 171-179.	1.7	13
34	A zinc-binding citrus protein metallothionein can act as a plant defense factor by controlling host-selective ACR-toxin production. Plant Molecular Biology, 2013, 81, 1-11.	2.0	8
35	Molecular characterization of a cDNA encoding a novel small GTP-binding protein from Arabidopsis thaliana. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1354, 99-104.	2.4	7
36	A kiwifruit cultivar crossbred with Actinidia chinensis and Actinidia rufa has practical tolerance to Pseudomonas syringae pv. actinidiae biovar 3. Journal of Plant Pathology, 2019, 101, 1211-1214.	0.6	6

#	Article	IF	CITATIONS
37	SGT1 contributes to maintaining protein levels of MEK2DD to facilitate hypersensitive response-like cell death in Nicotiana benthamiana. Physiological and Molecular Plant Pathology, 2016, 94, 47-52.	1.3	4
38	Citrus as a molecular contact point for co-evolution of Alternaria pathogens. Physiological and Molecular Plant Pathology, 2016, 95, 93-96.	1.3	4
39	Simultaneous mutations in <i>SMN1</i> and <i>SUMM2</i> fully suppress the dwarf and autoimmune phenotypes of <i>Arabidopsis mpk4</i> mutant. Plant Signaling and Behavior, 2022, 17, 2046412.	1.2	4
40	Plant Mitogen-Activated Protein Kinase Cascades in Signaling Crosstalk. , 0, , 23-42.		3