Xiuyun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6118429/publications.pdf

Version: 2024-02-01

37	1,282	20	35
papers	citations	h-index	g-index
37	37	37	1182 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Insights into the high performance of Mn-Co oxides derived from metal-organic frameworks for total toluene oxidation. Journal of Hazardous Materials, 2018, 349, 119-127.	12.4	191
2	Morphology Effect of Ceria on the Catalytic Performances of Ru/CeO ₂ Catalysts for Ammonia Synthesis. Industrial & Engineering Chemistry Research, 2018, 57, 9127-9135.	3.7	105
3	Ammonia Synthesis Activity of Alumina-Supported Ruthenium Catalyst Enhanced by Alumina Phase Transformation. ACS Catalysis, 2019, 9, 1635-1644.	11.2	96
4	Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst. Nature Communications, 2020, 11 , 653 .	12.8	72
5	Challenges and Opportunities of Ru-Based Catalysts toward the Synthesis and Utilization of Ammonia. ACS Catalysis, 2022, 12, 3938-3954.	11.2	67
6	Controllable P Doping of the LaCoO ₃ Catalyst for Efficient Propane Oxidation: Optimized Surface Co Distribution and Enhanced Oxygen Vacancies. ACS Applied Materials & Samp; Interfaces, 2020, 12, 23789-23799.	8.0	61
7	Enhanced Ammonia Synthesis Activity of Ceria-Supported Ruthenium Catalysts Induced by CO Activation. ACS Catalysis, 2021, 11, 1331-1339.	11.2	61
8	Synthesis of Co–Mn oxides with double-shelled nanocages for low-temperature toluene combustion. Catalysis Science and Technology, 2018, 8, 4494-4502.	4.1	58
9	Atomically Dispersed Ru Catalyst for Low-Temperature Nitrogen Activation to Ammonia via an Associative Mechanism. ACS Catalysis, 2020, 10, 9504-9514.	11.2	47
10	Influence of Ru Substitution on the Properties of LaCoO ₃ Catalysts for Ammonia Synthesis: XAFS and XPS Studies. Industrial & Engineering Chemistry Research, 2018, 57, 17375-17383.	3.7	40
11	Facile fabrication of shape-controlled Co _x Mn _y O _{\hat{l}^2} nanocatalysts for benzene oxidation at low temperatures. Chemical Communications, 2018, 54, 2154-2157.	4.1	37
12	Strong metal–support interactions of Co-based catalysts facilitated by dopamine for highly efficient ammonia synthesis: <i>in situ</i> XPS and XAFS spectroscopy coupled with TPD studies. Chemical Communications, 2019, 55, 474-477.	4.1	36
13	Highly efficient ammonia synthesis at low temperature over a Ru–Co catalyst with dual atomically dispersed active centers. Chemical Science, 2021, 12, 7125-7137.	7.4	35
14	Studies on SO ₂ Tolerance and Regeneration over Perovskite-Type LaCo _{1â€"<i>x</i>} Pt _{<i>x</i>} O ₃ in NO _{<i>x</i>} Storage and Reduction. Journal of Physical Chemistry C, 2014, 118, 13743-13751.	3.1	29
15	Construction of Spatial Effect from Atomically Dispersed Co Anchoring on Subnanometer Ru Cluster for Enhanced N ₂ -to-NH ₃ Conversion. ACS Catalysis, 2021, 11, 4430-4440.	11.2	28
16	Sacrificial Adsorbate Strategy Achieved Strong Metal–Support Interaction of Stable Cu Nanocatalysts. ACS Applied Energy Materials, 2018, 1, 1408-1414.	5.1	27
17	Inducing the Metal–Support Interaction and Enhancing the Ammonia Synthesis Activity of Ceria-Supported Ruthenium Catalyst via N ₂ H ₄ Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 4885-4893.	6.7	24
18	The role of Cu species in electrospun CuO–CeO ₂ nanofibers for total benzene oxidation. New Journal of Chemistry, 2015, 39, 1001-1005.	2.8	23

#	Article	IF	Citations
19	Efficient ammonia synthesis over a core–shell Ru/CeO ₂ catalyst with a tunable CeO ₂ size: DFT calculations and XAS spectroscopy studies. Inorganic Chemistry Frontiers, 2019, 6, 396-406.	6.0	23
20	Facile synthesis of Mn–Fe/CeO ₂ nanotubes by gradient electrospinning and their excellent catalytic performance for propane and methane oxidation. Dalton Transactions, 2017, 46, 16967-16972.	3.3	22
21	Effects of Using Carbon-Coated Alumina as Support for Ba-Promoted Ru Catalyst in Ammonia Synthesis. Industrial & Engineering Chemistry Research, 2019, 58, 10285-10295.	3.7	21
22	Sacrificial Sucrose Strategy Achieved Enhancement of Ammonia Synthesis Activity over a Ceria-Supported Ru Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 8962-8969.	6.7	21
23	Molecular-level understanding of reaction path optimization as a function of shape concerning the metal–support interaction effect of Co/CeO ₂ on water-gas shift catalysis. Catalysis Science and Technology, 2019, 9, 4928-4937.	4.1	19
24	Integrating Dissociative and Associative Routes for Efficient Ammonia Synthesis over a TiCN-Promoted Ru-Based Catalyst. ACS Catalysis, 2022, 12, 2651-2660.	11.2	18
25	Geometric and electronic modification of the active Fe3+ sites of α-Fe2O3 for highly efficient toluene combustion. Journal of Hazardous Materials, 2020, 398, 123233.	12.4	15
26	Construction of a Pd(PdO)/Co ₃ O ₄ @SiO ₂ core–shell structure for efficient low-temperature methane combustion. Nanoscale, 2021, 13, 5026-5032.	5.6	14
27	Facile Synthesis and <scp>Highâ€Value</scp> Utilization of Ammonia. Chinese Journal of Chemistry, 2022, 40, 953-964.	4.9	14
28	Essential Role of Ru–Anion Interaction in Ru-Based Ammonia Synthesis Catalysts. ACS Catalysis, 2022, 12, 7633-7642.	11.2	13
29	N-Induced Electron Transfer Effect on Low-Temperature Activation of Nitrogen for Ammonia Synthesis over Co-Based Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 1529-1539.	6.7	11
30	Studies of a Highly Active Cobalt Atomic Cluster Catalyst for Ammonia Synthesis. ACS Sustainable Chemistry and Engineering, 2022, 10, 1951-1960.	6.7	11
31	Facile fabrication of hollow tubular mixed oxides for selective catalytic reduction of NOx at low temperature: a combined experimental and theoretical study. Chemical Communications, 2017, 53, 967-970.	4.1	9
32	Promoting Effects of Lanthan on Ru/AC for Ammonia Synthesis: Tuning Catalytic Efficiency and Stability Simultaneously. ChemistrySelect, 2017, 2, 6040-6046.	1.5	9
33	Boosting Efficient Ammonia Synthesis over Atomically Dispersed Co-Based Catalyst via the Modulation of Geometric and Electronic Structures. CCS Chemistry, 2022, 4, 1758-1769.	7.8	7
34	Structural Evolution of Active Entities on Co ₃ O ₄ /CeO ₂ Catalyst during Water Gas Shift Reaction. Industrial & Engineering Chemistry Research, 2019, 58, 17692-17698.	3.7	6
35	Investigation on Deactivation of Kâ€promoted Ru Catalyst for Ammonia Synthesis by CO Formation. ChemistrySelect, 2020, 5, 6639-6645.	1.5	6
36	Enhanced ammonia synthesis activity of carbon-supported Mo catalyst by Mo carburization. Chemical Communications, 2022, 58, 7785-7788.	4.1	4

3

#	Article	IF	CITATIONS
37	Three-dimensional ordered macroporous Ru-substituted BaZrO ₃ perovskites: active catalysts for ammonia synthesis under mild conditions. Catalysis Science and Technology, 2019, 9, 6217-6221.	4.1	2