Limin Tong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6118423/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chalcogenide Microsphereâ€Assisted Optical Superâ€Resolution Imaging. Advanced Optical Materials, 2022, 10, 2102269.	7.3	11
2	Single Microwire Optical Autocorrelator at 2-μm Wavelength. IEEE Photonics Technology Letters, 2022, 34, 207-210.	2.5	0
3	Optical fibre taper-enabled waveguide photoactuators. Nature Communications, 2022, 13, 363.	12.8	24
4	Atomically Smooth Single-Crystalline Platform for Low-Loss Plasmonic Nanocavities. Nano Letters, 2022, 22, 1786-1794.	9.1	13
5	Twin-nanofiber structure for a highly efficient single-photon collection. Optics Express, 2022, 30, 9147.	3.4	4
6	Optical Microfibers for Sensing Proximity and Contact in Human–Machine Interfaces. ACS Applied Materials & Interfaces, 2022, 14, 14447-14454.	8.0	16
7	Optical Micro/Nano Fibers Enabled Smart Textiles for Human–Machine Interface. Advanced Fiber Materials, 2022, 4, 1108-1117.	16.1	30
8	Photonic Nanolaser with Extreme Optical Field Confinement. Physical Review Letters, 2022, 129, .	7.8	8
9	Strong mode coupling-enabled hybrid photon-plasmon laser with a microfiber-coupled nanorod. Science Advances, 2022, 8, .	10.3	9
10	Optical Micro/Nanofiber-Enabled Compact Tactile Sensor for Hardness Discrimination. ACS Applied Materials & Interfaces, 2021, 13, 4560-4566.	8.0	41
11	XPMâ€Induced Vector Asymmetrical Soliton with Spectral Period Doubling in Modeâ€Locked Fiber Laser. Laser and Photonics Reviews, 2021, 15, 2000216.	8.7	28
12	Ultrafast Laser Inducing Continuous Periodic Crystallization in the Glass Activated via Laserâ€Prepared Crystallite‧eeds. Advanced Optical Materials, 2021, 9, 2001962.	7.3	13
13	Self-organized phase-transition lithography for all-inorganic photonic textures. Light: Science and Applications, 2021, 10, 93.	16.6	24
14	Exceptional Point and Cross-Relaxation Effect in a Hybrid Quantum System. PRX Quantum, 2021, 2, .	9.2	43
15	Batch Fabrication of Highâ€Quality Infrared Chalcogenide Microsphere Resonators. Small, 2021, 17, e2100140.	10.0	4
16	Elastic ice microfibers. Science, 2021, 373, 187-192.	12.6	35
17	Experimental Demonstration of a Compact Variable Single-Mode Fiber Coupler Based on Microfiber. IEEE Photonics Technology Letters, 2021, 33, 687-690.	2.5	6
18	Strong coupling of a plasmonic nanoparticle to a semiconductor nanowire. Nanophotonics, 2021, 10, 2875-2881.	6.0	6

#	Article	IF	CITATIONS
19	A Multifunctional Airflow Sensor Enabled by Optical Micro/nanofiber. Advanced Fiber Materials, 2021, 3, 359-367.	16.1	22
20	Chalcogenide Glass Microfibers for Mid-Infrared Optics. Photonics, 2021, 8, 497.	2.0	9
21	Single-Nanowire Thermo-Optic Modulator Based on a Varshni Shift. ACS Photonics, 2020, 7, 2571-2577.	6.6	10
22	Ultra-Long Subwavelength Micro/Nanofibers With Low Loss. IEEE Photonics Technology Letters, 2020, 32, 1069-1072.	2.5	11
23	Excitation of Surface Plasmons by Inelastic Electron Tunneling. Frontiers in Physics, 2020, 8, .	2.1	5
24	Single-nanorod plasmon nanolaser: A route toward a three-dimensional ultraconfined lasing mode. Physical Review A, 2020, 102, .	2.5	2
25	Miniature Optical Correlator in a Single-Nanowire Sagnac Loop. ACS Photonics, 2020, 7, 3264-3269.	6.6	6
26	On-chip single-mode CdS nanowire laser. Light: Science and Applications, 2020, 9, 42.	16.6	45
27	High-performance siliconâ~graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light: Science and Applications, 2020, 9, 29.	16.6	155
28	Micro-/Nanofiber Optics: Merging Photonics and Material Science on Nanoscale for Advanced Sensing Technology. IScience, 2020, 23, 100810.	4.1	75
29	Ultrahigh-Precision Diameter Control of Nanofiber Using Direct Mode Cutoff Feedback. IEEE Photonics Technology Letters, 2020, 32, 219-222.	2.5	14
30	Flexible Liquidâ€Filled Fiber Adapter Enabled Wearable Optical Sensors. Advanced Materials Technologies, 2020, 5, 2000079.	5.8	18
31	Measuring the refractive index of optical adhesives at cryogenic temperatures. Applied Optics, 2020, 59, 1841.	1.8	2
32	Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber. Optics Express, 2020, 28, 12416.	3.4	32
33	Simultaneous generation of ultrabroadband noise-like pulses and intracavity third harmonic at 2  µm. Optics Letters, 2020, 45, 1583.	3.3	9
34	Scaling Laws for Plasmonic Nanolasers Far Beyond the Diffraction Limit. , 2020, , .		0
35	Coiled Optical Nanofiber for Optofluidic Absorbance Detection. ACS Sensors, 2019, 4, 2267-2271.	7.8	18
36	Selfâ€Organized Periodic Crystallization in Unconventional Glass Created by an Ultrafast Laser for Optical Attenuation in the Broadband Nearâ€Infrared Region. Advanced Optical Materials, 2019, 7, 1900593.	7.3	30

#	Article	IF	CITATIONS
37	Fast Lasing Wavelength Tuning in Single Nanowires. Advanced Optical Materials, 2019, 7, 1900797.	7.3	6
38	Functional Film Coated Optical Micro/Nanofibers for High-Performance Gas Sensing. IEEE Sensors Journal, 2019, 19, 9229-9234.	4.7	12
39	Plasmonic Nanolasers: Plasmonic Nanolasers: Pursuing Extreme Lasing Conditions on Nanoscale (Advanced Optical Materials 17/2019). Advanced Optical Materials, 2019, 7, 1970064.	7.3	3
40	Crosstalk in Two Intersecting Optical Microfibers. IEEE Photonics Technology Letters, 2019, 31, 1514-1517.	2.5	3
41	Single-nanowire spectrometers. Science, 2019, 365, 1017-1020.	12.6	291
42	Optical microfiber-based ultrafast fiber lasers. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	9
43	A simple approach to fiber-based tunable microcavity with high coupling efficiency. Applied Physics Letters, 2019, 114, .	3.3	18
44	Low-loss photonic-like guided mode in metal-supported optical nanofibers. Applied Physics Letters, 2019, 114, 031104.	3.3	4
45	Highâ€Speed and Highâ€Responsivity Hybrid Silicon/Blackâ€Phosphorus Waveguide Photodetectors at 2µm. Laser and Photonics Reviews, 2019, 13, 1900032.	8.7	91
46	Plasmonic Nanolasers: Pursuing Extreme Lasing Conditions on Nanoscale. Advanced Optical Materials, 2019, 7, 1900334.	7.3	36
47	Refractory Plasmonic Metal Nitride Nanoparticles for Broadband Nearâ€Infrared Optical Switches. Laser and Photonics Reviews, 2019, 13, 1900029.	8.7	31
48	Nanowire lasers as intracellular probes. Nanoscale, 2018, 10, 9729-9735.	5.6	54
49	Femtosecond Mode-locked Fiber Laser at 1 μm Via Optical Microfiber Dispersion Management. Scientific Reports, 2018, 8, 4732.	3.3	22
50	Metaparticles: Dressing Nanoâ€Objects with a Hyperbolic Coating. Laser and Photonics Reviews, 2018, 12, 1800179.	8.7	28
51	Electro-Optic Modulators: On-Chip Dual Electro-Optic and Optoelectric Modulation Based on ZnO Nanowire-Coated Photonic Crystal Nanocavity (Advanced Optical Materials 17/2018). Advanced Optical Materials, 2018, 6, 1870069.	7.3	0
52	Accurate real-time sensing tip for aqueous NO with optical fibers embedded in active hydrogel waveguide. AIP Advances, 2018, 8, 025207.	1.3	3
53	Onâ€Chip Dual Electroâ€Optic and Optoelectric Modulation Based on ZnO Nanowireâ€Coated Photonic Crystal Nanocavity. Advanced Optical Materials, 2018, 6, 1800374.	7.3	6
54	Proposed liquid-cooled nanowire lasers. Optics Express, 2018, 26, 4665.	3.4	4

#	Article	IF	CITATIONS
55	Micro/Nanofibre Optical Sensors: Challenges and Prospects. Sensors, 2018, 18, 903.	3.8	91
56	Additive manufacturing of silica glass using laser stereolithography with a top-down approach and fast debinding. RSC Advances, 2018, 8, 16344-16348.	3.6	44
57	2D Materials for Optical Modulation: Challenges and Opportunities. Advanced Materials, 2017, 29, 1606128.	21.0	364
58	Flexible integration of free-standing nanowires into silicon photonics. Nature Communications, 2017, 8, 20.	12.8	70
59	Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nature Communications, 2017, 8, 1132.	12.8	105
60	Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering. Light: Science and Applications, 2017, 6, e17061-e17061.	16.6	112
61	Roadmap on optical sensors. Journal of Optics (United Kingdom), 2017, 19, 083001.	2.2	70
62	Refractive index sensing based on semiconductor nanowire lasers. Applied Physics Letters, 2017, 111, .	3.3	8
63	Optofluidic refractive index sensor based on partial reflection. Photonic Sensors, 2017, 7, 97-104.	5.0	3
64	Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision. Optics Express, 2017, 25, 10434.	3.4	57
65	Charging and Discharging Channels in Photoluminescence Intermittency of Single Colloidal CdSe/CdS Core/Shell Quantum Dot. Journal of Physical Chemistry Letters, 2016, 7, 5176-5182.	4.6	31
66	Optical correlator based on single CdTe nanowire. , 2016, , .		0
67	Ultrahigh photoconductivity of bandgap-graded CdSxSe1â^'x nanowires probed by terahertz spectroscopy. Scientific Reports, 2016, 6, 27387.	3.3	15
68	Single CdTe Nanowire Optical Correlator for Femtojoule Pulses. Nano Letters, 2016, 16, 4807-4810.	9.1	29
69	Comment on "High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band― Physical Review Letters, 2016, 117, 219701.	7.8	2
70	Directional fluorescence emission from a compact plasmonicâ€diamond hybrid nanostructure. Laser and Photonics Reviews, 2016, 10, 647-655.	8.7	33
71	Size-Dependent Brittle-to-Ductile Transition in Silica Glass Nanofibers. Nano Letters, 2016, 16, 105-113.	9.1	120
72	Ultra-Sensitive Nanofiber Fluorescence Detection in a Microfluidic Chip. Sensors, 2015, 15, 4890-4898.	3.8	39

#	Article	IF	CITATIONS
73	Single-Band 2-nm-Line-Width Plasmon Resonance in a Strongly Coupled Au Nanorod. Nano Letters, 2015, 15, 7581-7586.	9.1	61
74	Microfiber Optical Sensors: A Review. Sensors, 2014, 14, 5823-5844.	3.8	199
75	Modeling of Au-Nanowire Waveguide for Plasmonic Sensing in Liquids. Journal of Lightwave Technology, 2014, 32, 4233-4238.	4.6	9
76	Photonic Nanowires: From Subwavelength Waveguides to Optical Sensors. Accounts of Chemical Research, 2014, 47, 656-666.	15.6	150
77	Nanowire plasmonic waveguides, circuits and devices. Laser and Photonics Reviews, 2013, 7, 855-881.	8.7	125
78	Hybrid Photon-Plasmon Nanowire Lasers. Nano Letters, 2013, 13, 5654-5659.	9.1	93
79	Dynamical Color-Controllable Lasing with Extremely Wide Tuning Range from Red to Green in a Single Alloy Nanowire Using Nanoscale Manipulation. Nano Letters, 2013, 13, 4945-4950.	9.1	101
80	Synthesis of Opticalâ€Quality Singleâ€Crystal <i>β</i> â€BaB ₂ O ₄ Microwires and Nanowires. Advanced Functional Materials, 2013, 23, 1232-1237.	14.9	35
81	Wavelength Tunable CdSe Nanowire Lasers Based on the Absorptionâ€Emissionâ€Absorption Process. Advanced Materials, 2013, 25, 833-837.	21.0	109
82	Semiconductor nanowire lasers. Advances in Optics and Photonics, 2013, 5, 216.	25.5	115
83	Optical microfibers and nanofibers. Nanophotonics, 2013, 2, 407-428.	6.0	118
84	All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics. Optics Express, 2013, 21, 15698.	3.4	32
85	Functionalized polymer nanofibers: a versatile platform for manipulating light at the nanoscale. Light: Science and Applications, 2013, 2, e102-e102.	16.6	214
86	Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers. Applied Physics Letters, 2013, 102, .	3.3	25
87	Experimental demonstration of stimulated Raman scattering in the evanescent field of a tapered nanofiber immersed in a liquid. , 2013, , .		0
88	Freestanding nanowire ring laser. Applied Physics Letters, 2013, 103, 183104.	3.3	10
89	Nanowires: Bandgap-Graded CdSxSe1-xNanowires for High-Performance Field-Effect Transistors and Solar Cells (Adv. Mater. 8/2013). Advanced Materials, 2013, 25, 1082-1082.	21.0	1
90	Wavelength Tunable CdSe Nanowire Lasers Based on the Absorption-Emission-Absorption Process (Adv. Mater. 6/2013). Advanced Materials, 2013, 25, 832-832.	21.0	2

#	Article	IF	CITATIONS
91	Wavelength-Converted/Selective Waveguiding Based on Composition-Graded Semiconductor Nanowires. Nano Letters, 2012, 12, 5003-5007.	9.1	87
92	Optically pumped semiconductor nanowire lasers. Frontiers of Optoelectronics, 2012, 5, 239-247.	3.7	4
93	Single-Nanowire Single-Mode Laser. Nano Letters, 2011, 11, 1122-1126.	9.1	208
94	Ultra-sensitive microfibre absorption detection in a microfluidic chip. Lab on A Chip, 2011, 11, 3720.	6.0	59
95	Experimental Demonstration of Plasmon Propagation, Coupling, and Splitting in Silver Nanowire at 1550-nm Wavelength. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1107-1111.	2.9	27
96	Longitudinal Lorentz force on a subwavelength-diameter optical fiber. Physical Review A, 2011, 83, .	2.5	11
97	Fusion Splicing Soft Glass Microfibers for Photonic Devices. IEEE Photonics Technology Letters, 2011, 23, 831-833.	2.5	18
98	Synthesis and waveguiding of single-crystalline LiNbO3 nanorods. Applied Physics Letters, 2011, 98, 093102.	3.3	20
99	Silver nanowire ring resonator. Science Bulletin, 2010, 55, 2649-2651.	1.7	9
100	Brief introduction to optical microfibers and nanofibers. Frontiers of Optoelectronics in China, 2010, 3, 54-60.	0.2	21
101	Nanowaveguides and couplers based on hybrid plasmonic modes. Applied Physics Letters, 2010, 97, .	3.3	45
102	Polarization Effects in Microfiber Loop and Knot Resonators. IEEE Photonics Technology Letters, 2010, 22, 586-588.	2.5	11
103	Fusion Spliced Microfiber Closed-Loop Resonators. IEEE Photonics Technology Letters, 2010, 22, 1075-1077.	2.5	21
104	Silver nanowire based plasmon propagation, coupling and splitting at 1.55 µm wavelength. , 2010, , .		0
105	Excitation of hybrid plasmon polaritons (HPPs) using nanofibers. , 2010, , .		0
106	Pigtailed CdSe nanoribbon ring laser. , 2010, , .		0
107	Modeling bending losses of optical nanofibers or nanowires. Applied Optics, 2009, 48, 4365.	2.1	44
108	Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates. Microfluidics and Nanofluidics, 2008, 5, 727-732.	2.2	40

#	Article	IF	CITATIONS
109	Polymer micro or nanofibers for optical device applications. Journal of Applied Polymer Science, 2008, 110, 1080-1084.	2.6	28
110	Mach-Zehnder interferometers assembled with optical microfibers or nanofibers. Optics Letters, 2008, 33, 303.	3.3	186
111	Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film. Optics Express, 2008, 16, 13349.	3.4	161
112	Supported microfiber loops for optical sensing. Optics Express, 2008, 16, 14429.	3.4	105
113	Polymer Single-Nanowire Optical Sensors. Nano Letters, 2008, 8, 2757-2761.	9.1	306
114	TAPER-DRAWING FABRICATION OF GLASS NANOWIRES. , 2008, , 213-234.		0
115	Evanescent-Wave Pumped Microfiber Knot Laser. , 2007, , .		0
116	Modeling of evanescent coupling between two parallel optical nanowires. Applied Optics, 2007, 46, 1429.	2.1	106
117	Effect of Host Polymer on Microfiber Resonator. IEEE Photonics Technology Letters, 2007, 19, 1386-1388.	2.5	59
118	Assembly of Silica Nanowires on Silica Aerogels for Microphotonic Devices. Nano Letters, 2005, 5, 259-262.	9.1	274
119	Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Optics Express, 2004, 12, 1025.	3.4	689
120	Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 2003, 426, 816-819.	27.8	1,500
121	Single-crystal Y_2O_3-ZrO_2 rectangular waveguides for ultrahigh-temperature sensing applications. Applied Optics, 2002, 41, 3804.	2.1	4
122	A laser pumped Nd3+-doped YAG fiber-optic thermal tip for laser thermotherapy. Lasers in Surgery and Medicine, 2002, 30, 67-69.	2.1	7
123	Plasmon–Exciton Coupling Effect on Plasmon Damping. Advanced Photonics Research, 0, , 2100281.	3.6	2