Xavier Sala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6118320/publications.pdf Version: 2024-02-01

YANJED SALA

#	Article	IF	CITATIONS
1	Insights into the light-driven hydrogen evolution reaction of mesoporous graphitic carbon nitride decorated with Pt or Ru nanoparticles. Dalton Transactions, 2022, 51, 731-740.	1.6	3
2	Ruthenium nanoparticles supported on carbon-based nanoallotropes as co-catalyst to enhance the photocatalytic hydrogen evolution activity of carbon nitride. Renewable Energy, 2021, 168, 668-675.	4.3	11
3	Light-Driven Hydrogen Evolution Assisted by Covalent Organic Frameworks. Catalysts, 2021, 11, 754.	1.6	14
4	Consecutive Ligandâ€Based Electron Transfer in New Molecular Copperâ€Based Water Oxidation Catalysts. Angewandte Chemie, 2021, 133, 18787-18792.	1.6	2
5	Consecutive Ligandâ€Based Electron Transfer in New Molecular Copperâ€Based Water Oxidation Catalysts. Angewandte Chemie - International Edition, 2021, 60, 18639-18644.	7.2	37
6	A molecular approach to the synthesis of platinum-decorated mesoporous graphitic carbon nitride as selective CO2 reduction photocatalyst. Journal of CO2 Utilization, 2021, 50, 101574.	3.3	13
7	Ru nanoparticles supported on alginate-derived graphene as hybrid electrodes for the hydrogen evolution reaction. New Journal of Chemistry, 2021, 46, 49-56.	1.4	4
8	Synthesis of 0D to 3D hybrid-carbon nanomaterials carrying platinum(0) nanoparticles: Towards the electrocatalytic determination of methylparabens at ultra-trace levels. Sensors and Actuators B: Chemical, 2020, 305, 127467.	4.0	10
9	Water oxidation electrocatalysis using ruthenium coordination oligomers adsorbed on multiwalled carbon nanotubes. Nature Chemistry, 2020, 12, 1060-1066.	6.6	54
10	Effect of Ligand Chelation and Sacrificial Oxidant on the Integrity of Triazole-Based Carbene Iridium Water Oxidation Catalysts. Inorganic Chemistry, 2020, 59, 12337-12347.	1.9	18
11	TiO2-mediated visible-light-driven hydrogen evolution by ligand-capped Ru nanoparticles. Sustainable Energy and Fuels, 2020, 4, 4170-4178.	2.5	7
12	The role of catalyst–support interactions in oxygen evolution anodes based on Co(OH) ₂ nanoparticles and carbon microfibers. Catalysis Science and Technology, 2020, 10, 4513-4521.	2.1	9
13	Organocatalytic <i>vs.</i> Ru-based electrochemical hydrogenation of nitrobenzene in competition with the hydrogen evolution reaction. Dalton Transactions, 2020, 49, 6446-6456.	1.6	17
14	Local infiltration analgesia for total knee arthroplasty: Does a mixture of ropivacaine and epinephrine have an impact on hemodynamics? An observational cohort study. Saudi Journal of Anaesthesia, 2020, 14, 335.	0.2	4
15	Vascular access surgery can be safely performed in an ambulatory setting. Journal of Vascular Access, 2019, 20, 195-201.	0.5	1
16	Redox Catalysis for Artificial Photosynthesis. European Journal of Inorganic Chemistry, 2019, 2019, 2019, 2017-2019.	1.0	1
17	The development of molecular water oxidation catalysts. Nature Reviews Chemistry, 2019, 3, 331-341.	13.8	230
18	Ruthenium Nanoparticles for Catalytic Water Splitting. ChemSusChem, 2019, 12, 2493-2514.	3.6	93

#	Article	IF	CITATIONS
19	Seven Coordinated Molecular Ruthenium–Water Oxidation Catalysts: A Coordination Chemistry Journey. Chemical Reviews, 2019, 119, 3453-3471.	23.0	148
20	Ruthenium Nanoparticles Supported on Carbon Microfibers for Hydrogen Evolution Electrocatalysis. European Journal of Inorganic Chemistry, 2019, 2019, 2071-2077.	1.0	16
21	Catalytic H2 Evolution with CoO, Co(OH)2 and CoO(OH) Nanoparticles Generated from a Molecular Polynuclear Co Complex. European Journal of Inorganic Chemistry, 2018, 2018, 1499-1505.	1.0	2
22	The Role of Seven-Coordination in Ru-Catalyzed Water Oxidation. ACS Catalysis, 2018, 8, 2039-2048.	5.5	41
23	Synthesis, Structure, and Redox Properties of a <i>trans</i> -Diaqua Ru Complex That Reaches Seven-Coordination at High Oxidation States. Inorganic Chemistry, 2018, 57, 1757-1765.	1.9	9
24	Ligand-Capped Ru Nanoparticles as Efficient Electrocatalyst for the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 11094-11102.	5.5	70
25	Rational design of a neutral pH functional and stable organic photocathode. Chemical Communications, 2018, 54, 5732-5735.	2.2	24
26	Light-driven water oxidation using hybrid photosensitizer-decorated Co3O4 nanoparticles. Materials Today Energy, 2018, 9, 506-515.	2.5	11
27	Behavior of Ru–bda Waterâ€Oxidation Catalysts in Low Oxidation States. Chemistry - A European Journal, 2018, 24, 12838-12847.	1.7	27
28	Mononuclear ruthenium compounds bearing N-donor and N-heterocyclic carbene ligands: structure and oxidative catalysis. Dalton Transactions, 2017, 46, 2829-2843.	1.6	6
29	Kinetic Analysis of an Efficient Molecular Light-Driven Water Oxidation System. ACS Catalysis, 2017, 7, 5142-5150.	5.5	35
30	Ruthenium Water Oxidation Catalysts based on Pentapyridyl Ligands. ChemSusChem, 2017, 10, 4517-4525.	3.6	32
31	A porous Ru nanomaterial as an efficient electrocatalyst for the hydrogen evolution reaction under acidic and neutral conditions. Chemical Communications, 2017, 53, 11713-11716.	2.2	83
32	How to make an efficient and robust molecular catalyst for water oxidation. Chemical Society Reviews, 2017, 46, 6088-6098.	18.7	201
33	Dissimilar catalytic behavior of molecular or colloidal palladium systems with a new NHC ligand. Dalton Transactions, 2017, 46, 11768-11778.	1.6	9
34	Hydrogen Bonding Rescues Overpotential in Seven-Coordinated Ru Water Oxidation Catalysts. ACS Catalysis, 2017, 7, 6525-6532.	5.5	50
35	Photoelectrochemical Behavior of a Molecular Ru-Based Water-Oxidation Catalyst Bound to TiO ₂ -Protected Si Photoanodes. Journal of the American Chemical Society, 2017, 139, 11345-11348.	6.6	56
36	Ru–bis(pyridine)pyrazolate (bpp)â€Based Waterâ€Oxidation Catalysts Anchored on TiO ₂ : The Importance of the Nature and Position of the Anchoring Group. Chemistry - A European Journal, 2016, 22, 5261-5268.	1.7	22

#	Article	IF	CITATIONS
37	Dinuclear Cobalt Complexes with a Decadentate Ligand Scaffold: Hydrogen Evolution and Oxygen Reduction Catalysis. Chemistry - A European Journal, 2016, 22, 361-369.	1.7	36
38	Neutral Water Splitting Catalysis with a High FF Triple Junction Polymer Cell. ACS Catalysis, 2016, 6, 3310-3316.	5.5	24
39	Synthesis and Isomeric Analysis of Ru ^{II} Complexes Bearing Pentadentate Scaffolds. Inorganic Chemistry, 2016, 55, 11216-11229.	1.9	17
40	Foot of the Wave Analysis for Mechanistic Elucidation and Benchmarking Applications in Molecular Water Oxidation Catalysis. ChemSusChem, 2016, 9, 3361-3369.	3.6	73
41	A Million Turnover Molecular Anode for Catalytic Water Oxidation. Angewandte Chemie, 2016, 128, 15608-15612.	1.6	21
42	A Million Turnover Molecular Anode for Catalytic Water Oxidation. Angewandte Chemie - International Edition, 2016, 55, 15382-15386.	7.2	90
43	In situ Raman and surface-enhanced Raman spectroscopy on working electrodes: spectroelectrochemical characterization of water oxidation electrocatalysts. Physical Chemistry Chemical Physics, 2015, 17, 21094-21103.	1.3	118
44	Intramolecular Proton Transfer Boosts Water Oxidation Catalyzed by a Ru Complex. Journal of the American Chemical Society, 2015, 137, 10786-10795.	6.6	246
45	Powerful Bis-facially Pyrazolate-Bridged Dinuclear Ruthenium Epoxidation Catalyst. Inorganic Chemistry, 2015, 54, 6782-6791.	1.9	11
46	Behavior of the Ru-bda Water Oxidation Catalyst Covalently Anchored on Glassy Carbon Electrodes. ACS Catalysis, 2015, 5, 3422-3429.	5.5	78
47	Chemical, electrochemical and photochemical molecular water oxidation catalysts. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 71-81.	1.7	13
48	Molecular Water Oxidation Mechanisms Followed by Transition Metals: State of the Art. Accounts of Chemical Research, 2014, 47, 504-516.	7.6	276
49	Supramolecular Water Oxidation with Ru–bdaâ€Based Catalysts. Chemistry - A European Journal, 2014, 20, 17282-17286.	1.7	76
50	Characterization and performance of electrostatically adsorbed Ru–Hbpp water oxidation catalysts. Catalysis Science and Technology, 2014, 4, 190-199.	2.1	9
51	Synthesis, Characterization, and Linkage Isomerism in Mononuclear Ruthenium Complexes Containing the New Pyrazolate-Based Ligand Hpbl. Inorganic Chemistry, 2014, 53, 8025-8035.	1.9	8
52	Dinuclear Ruthenium Complexes Containing the Hpbl Ligand: Synthesis, Characterization, Linkage Isomerism, and Epoxidation Catalysis. Inorganic Chemistry, 2014, 53, 10394-10402.	1.9	10
53	Dinuclear ruthenium complexes containing a new ditopic phthalazin-bis(triazole) ligand that promotes metal–metal interactions. New Journal of Chemistry, 2014, 38, 1980-1987.	1.4	17

#	Article	IF	CITATIONS
55	Palladium catalytic systems with hybrid pyrazole ligands in C–C coupling reactions. Nanoparticles versus molecular complexes. Catalysis Science and Technology, 2013, 3, 475-489.	2.1	27
56	Molecular ruthenium complexes anchored on magnetic nanoparticles that act as powerful and magnetically recyclable stereospecific epoxidation catalysts. Catalysis Science and Technology, 2013, 3, 706-714.	2.1	20
57	New Dinuclear Ruthenium Complexes: Structure and Oxidative Catalysis. Inorganic Chemistry, 2013, 52, 4335-4345.	1.9	24
58	Ruthenium Complexes with Chiral Bis-Pinene Ligands: an Array of Subtle Structural Diversity. Inorganic Chemistry, 2013, 52, 4985-4992.	1.9	7
59	Understanding Electronic Ligand Perturbation over Successive Metalâ€Based Redox Potentials in Mononuclear Ruthenium–Aqua Complexes. ChemPlusChem, 2013, 78, 235-243.	1.3	17
60	Nâ€Tetradentate SPANamine Derivatives and Their Mn ^{II} â€Complexes as Catalysts for Epoxidation of Alkenes. European Journal of Inorganic Chemistry, 2013, 2013, 1213-1224.	1.0	19
61	High pressure processing of dry-cured ham: Ultrastructural and molecular changes affecting sodium and water dynamics. Innovative Food Science and Emerging Technologies, 2012, 16, 335-340.	2.7	38
62	Tools for Studying Dry-Cured Ham Processing by Using Computed Tomography. Journal of Agricultural and Food Chemistry, 2012, 60, 241-249.	2.4	26
63	K-lactate and high pressure effects on the safety and quality of restructured hams. Meat Science, 2012, 91, 56-61.	2.7	32
64	Transitionâ€Metal Complexes Containing the Dinucleating Tetraâ€ <i>N</i> â€Dentate 3,5â€Bis(2â€pyridyl)pyrazo (Hbpp) Ligand – A Robust Scaffold for Multiple Applications Including the Catalytic Oxidation of Water to Molecular Oxygen. European Journal of Inorganic Chemistry, 2012, 2012, 4775-4789.	ole 1.0	27
65	A new dinuclear Ru-Hbpp based water oxidation catalyst with a trans-disposition of the Ru-OH. Dalton Transactions, 2011, 40, 3640.	1.6	40
66	Synthesis, Structure, and Reactivity of New Tetranuclear Ru-Hbpp-Based Water-Oxidation Catalysts. Inorganic Chemistry, 2011, 50, 2771-2781.	1.9	61
67	Ligand Influence over the Formation of Dinuclear [2+2] versus Trinuclear [3+3] CuISchiff Base Macrocyclic Complexes. Inorganic Chemistry, 2011, 50, 6878-6889.	1.9	13
68	Chapter 10. Molecular Ru and Ir Complexes Capable of Acting as Water Oxidation Catalysts. RSC Energy and Environment Series, 2011, , 273-287.	0.2	1
69	Throughâ€5pace Ligand Interactions in Enantiomeric Dinuclear Ru Complexes. Chemistry - A European Journal, 2010, 16, 7965-7968.	1.7	20
70	The <i>cis</i> â€{Ru ^{II} (bpy) ₂ (H ₂ O) ₂] ²⁺ Waterâ€Oxidation Catalyst Revisited. Angewandte Chemie - International Edition, 2010, 49, 7745-7747.	7.2	107
71	A Ruâ€Hbppâ€Based Waterâ€Oxidation Catalyst Anchored on Rutile TiO ₂ . ChemSusChem, 2009, 2, 321-329.	3.6	40
72	Molecular Catalysts that Oxidize Water to Dioxygen. Angewandte Chemie - International Edition, 2009, 48, 2842-2852.	7.2	400

#	Article	IF	CITATIONS
73	Stereospecific CH Oxidation with H ₂ O ₂ Catalyzed by a Chemically Robust Siteâ€Isolated Iron Catalyst. Angewandte Chemie - International Edition, 2009, 48, 5720-5723.	7.2	254
74	Mn(ii) complexes containing the polypyridylic chiral ligand (â^')-pinene[5,6]bipyridine. Catalysts for oxidation reactions. Dalton Transactions, 2009, , 8117.	1.6	26
75	DNA-Cleavage Induced by New Macrocyclic Schiff base Dinuclear Cu(I) Complexes Containing Pyridyl Pendant Arms. Inorganic Chemistry, 2009, 48, 11098-11107.	1.9	40
76	Oxygenâ^'Oxygen Bond Formation by the Ru-Hbpp Water Oxidation Catalyst Occurs Solely via an Intramolecular Reaction Pathway. Journal of the American Chemical Society, 2009, 131, 2768-2769.	6.6	155
77	Synthesis and Structure of Novel Rull - N≡C - Me Complexes and their Activity Towards Nitrile Hydrolysis: An Examination of Ligand Effects. Australian Journal of Chemistry, 2009, 62, 1675.	0.5	11
78	Modular Spiro Bidentate Nitrogen Ligands – Synthesis, Resolution and Application in Asymmetric Catalysis. European Journal of Organic Chemistry, 2008, 2008, 6197-6205.	1.2	34
79	Ruâ€Hbppâ€Based Waterâ€Oxidation Catalysts Anchored on Conducting Solid Supports. Angewandte Chemie - International Edition, 2008, 47, 5830-5832.	7.2	108
80	Ruthenium-catalyzed asymmetric hydrogenation of N-(3,4-dihydro-2-naphthalenyl)-acetamide. Catalysis Communications, 2008, 9, 117-119.	1.6	12
81	New Ruthenium(II) Complexes with Enantiomerically Pure Bis- and Tris(pinene)-Fused Tridentate Ligands. Synthesis, Characterization and Stereoisomeric Analysis. Inorganic Chemistry, 2008, 47, 8016-8024.	1.9	16
82	Synthesis, Structure, Redox Properties, and Catalytic Activity of New Ruthenium Complexes Containing Neutral or Anionic and Facial or Meridional Ligands:  An Evaluation of Electronic and Geometrical Effects. Inorganic Chemistry, 2007, 46, 5381-5389.	1.9	19
83	Chiral manganese complexes with pinene appended tetradentate ligands as stereoselective epoxidation catalysts. Dalton Transactions, 2007, , 5539.	1.6	79
84	The Spectroscopic, Electrochemical and Structural Characterization of a Family of Ru Complexes Containing theC2-Symmetric Didentate Chiral 1,3-Oxazoline Ligand and Their Catalytic Activity. European Journal of Inorganic Chemistry, 2007, 2007, 5207-5214.	1.0	15
85	New Synthetic Routes toward Enantiopure Nitrogen Donor Ligands. Journal of Organic Chemistry, 2006, 71, 9283-9290.	1.7	20
86	Atropisomeric Discrimination in New Rull Complexes Containing theC2-Symmetric Didentate Chiral Phenyl-1,2-bisoxazolinic Ligand. Chemistry - A European Journal, 2006, 12, 2798-2807.	1.7	30
87	Synthesis, Structure, and Redox Properties of a New Aqua Ruthenium Complex Containing the Tridentate [9]aneS3 and the Didentate 1,10-Phenanthroline Ligands. European Journal of Inorganic Chemistry, 2004, 2004, 612-618.	1.0	33
88	Synthesis, Structure, and Substitution Mechanism of New Ru(II) Complexes Containing 1,4,7-Trithiacyclononane and 1,10-Phenanthroline Ligands. Inorganic Chemistry, 2004, 43, 5403-5409.	1.9	34