Zhengyou Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6118310/publications.pdf

Version: 2024-02-01

		23334	30010
154	11,243	54	103
papers	citations	h-index	g-index
157	157	157	4573
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Observation of topological valley transport of sound in sonic crystals. Nature Physics, 2017, 13, 369-374.	6.5	666
2	Focusing of Sound in a 3D Phononic Crystal. Physical Review Letters, 2004, 93, 024301.	2.9	536
3	Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density. Physical Review Letters, 2007, 99, 093904.	2.9	483
4	Negative refraction of acoustic waves in two-dimensional phononic crystals. Applied Physics Letters, 2004, 85, 341-343.	1.5	429
5	Analytic model of phononic crystals with local resonances. Physical Review B, 2005, 71, .	1.1	408
6	Valley Vortex States in Sonic Crystals. Physical Review Letters, 2016, 116, 093901.	2.9	336
7	Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature, 2018, 560, 61-64.	13.7	330
8	Elastic wave scattering by periodic structures of spherical objects: Theory and experiment. Physical Review B, 2000, 62, 2446-2457.	1.1	329
9	Anomalous refraction of airborne sound through ultrathin metasurfaces. Scientific Reports, 2014, 4, 6517.	1.6	299
10	On-chip valley topological materials for elastic wave manipulation. Nature Materials, 2018, 17, 993-998.	13.3	265
11	Weyl points and Fermi arcs in a chiral phononicÂcrystal. Nature Physics, 2018, 14, 30-34.	6.5	258
12	Ultrasound Tunneling through 3D Phononic Crystals. Physical Review Letters, 2002, 88, 104301.	2.9	253
13	Three-component elastic wave band-gap material. Physical Review B, 2002, 65, .	1.1	240
14	Coding Acoustic Metasurfaces. Advanced Materials, 2017, 29, 1603507.	11.1	207
15	Valley Topological Phases in Bilayer Sonic Crystals. Physical Review Letters, 2018, 120, 116802.	2.9	181
16	Acoustic Realization of Quadrupole Topological Insulators. Physical Review Letters, 2020, 124, 206601.	2.9	160
17	Effective Mass Density of Fluid-Solid Composites. Physical Review Letters, 2006, 96, 024301.	2.9	156
18	Dirac cones in two-dimensional artificial crystals for classical waves. Physical Review B, 2014, 89, .	1.1	153

#	Article	IF	CITATIONS
19	Tuning Fabry-Perot resonances via diffraction evanescent waves. Physical Review B, 2007, 76, .	1.1	150
20	Negative-refraction imaging with two-dimensional phononic crystals. Physical Review B, 2005, 72, .	1.1	146
21	Theory for elastic wave scattering by a two-dimensional periodical array of cylinders: An ideal approach for band-structure calculations. Physical Review B, 2003, 67, .	1.1	139
22	Extremal Transmission and Beating Effect of Acoustic Waves in Two-Dimensional Sonic Crystals. Physical Review Letters, 2008, 101, 264303.	2.9	130
23	Far-field imaging of acoustic waves by a two-dimensional sonic crystal. Physical Review B, 2005, 71, .	1.1	121
24	Dynamic mass density and acoustic metamaterials. Physica B: Condensed Matter, 2007, 394, 256-261.	1.3	110
25	Observation of acoustic valley vortex states and valley-chirality locked beam splitting. Physical Review B, 2017, 95, .	1.1	106
26	Higher-order topological semimetal in acoustic crystals. Nature Materials, 2021, 20, 812-817.	13.3	106
27	Acoustic far-field focusing effect for two-dimensional graded negative refractive-index sonic crystals. Applied Physics Letters, 2010, 96, .	1.5	100
28	Making sound vortices by metasurfaces. AIP Advances, 2016, 6, .	0.6	99
28	Making sound vortices by metasurfaces. AIP Advances, 2016, 6, . High performance of polyimide/CaCu < sub>3 < /sub>Ti < sub>4 < /sub>O < sub>12 < /sub>@Ag hybrid films with enhanced dielectric permittivity and low dielectric loss. Journal of Materials Chemistry A, 2015, 3, 4916-4921.	0.6 5.2	99
	High performance of polyimide/CaCu ₃ Ti ₄ O ₁₂ @Ag hybrid films with enhanced dielectric permittivity and low dielectric loss. Journal of Materials Chemistry A, 2015,		
29	High performance of polyimide/CaCu ₃ Ti ₄ O ₁₂ @Ag hybrid films with enhanced dielectric permittivity and low dielectric loss. Journal of Materials Chemistry A, 2015, 3, 4916-4921. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure.	5.2	98
30	High performance of polyimide/CaCu ₃ Ti ₄ O ₁₂ @Ag hybrid films with enhanced dielectric permittivity and low dielectric loss. Journal of Materials Chemistry A, 2015, 3, 4916-4921. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Applied Physics Letters, 2016, 109, . TiO ₂ Photonic Crystals with Localized Surface Photothermal Effect and Enhanced Photocatalytic CO ₂ Reduction Activity. ACS Sustainable Chemistry and Engineering, 2018,	5.2 1.5	98
29 30 31	High performance of polyimide/CaCu ₃ Ti ₄ O ₁₂ @Ag hybrid films with enhanced dielectric permittivity and low dielectric loss. Journal of Materials Chemistry A, 2015, 3, 4916-4921. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Applied Physics Letters, 2016, 109, . TiO ₂ Photonic Crystals with Localized Surface Photothermal Effect and Enhanced Photocatalytic CO ₂ Reduction Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 15653-15661.	5.2 1.5 3.2	98 94 94
29 30 31 32	High performance of polyimide/CaCu ₃ Ti ₄ O ₁₂ @Ag hybrid films with enhanced dielectric permittivity and low dielectric loss. Journal of Materials Chemistry A, 2015, 3, 4916-4921. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Applied Physics Letters, 2016, 109, . TiO ₂ Photonic Crystals with Localized Surface Photothermal Effect and Enhanced Photocatalytic CO ₂ Reduction Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 15653-15661. Asymmetric acoustic gratings. Applied Physics Letters, 2011, 98, . Experimental characterization of fragile topology in an acoustic metamaterial. Science, 2020, 367,	5.2 1.5 3.2	98 94 94 90
29 30 31 32 33	High performance of polyimide/CaCu < sub>3 < /sub>Ti < sub>4 < /sub>O < sub>12 < /sub>@Ag hybrid films with enhanced dielectric permittivity and low dielectric loss. Journal of Materials Chemistry A, 2015, 3, 4916-4921. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Applied Physics Letters, 2016, 109, . TiO < sub>2 < /sub> Photonic Crystals with Localized Surface Photothermal Effect and Enhanced Photocatalytic CO < sub>2 < /sub> Reduction Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 15653-15661. Asymmetric acoustic gratings. Applied Physics Letters, 2011, 98, . Experimental characterization of fragile topology in an acoustic metamaterial. Science, 2020, 367, 797-800.	5.2 1.5 3.2 1.5	98 94 94 90

#	Article	IF	Citations
37	Valley-locked waveguide transport in acoustic heterostructures. Nature Communications, 2020, 11, 3000.	5.8	84
38	Acoustic Transmission Enhancement through a Periodically Structured Stiff Plate without Any Opening. Physical Review Letters, 2010, 105, 074301.	2.9	81
39	Subwavelength imaging by a simple planar acoustic superlens. Applied Physics Letters, 2010, 97, .	1.5	81
40	Mode-selecting acoustic filter by using resonant tunneling of two-dimensional double phononic crystals. Applied Physics Letters, 2005, 87, 104101.	1.5	80
41	Valley Physics in Non-Hermitian Artificial Acoustic Boron Nitride. Physical Review Letters, 2018, 120, 246601.	2.9	79
42	Phononic-Crystal-Based Acoustic Sieve for Tunable Manipulations of Particles by a Highly Localized Radiation Force. Physical Review Applied, 2014, 1, .	1.5	71
43	Multiband Asymmetric Transmission of Airborne Sound by Coded Metasurfaces. Physical Review Applied, 2017, 7, .	1.5	71
44	Acoustic directional radiation and enhancement caused by band-edge states of two-dimensional phononic crystals. Applied Physics Letters, 2006, 89, 063106.	1.5	67
45	Energy Velocity of Diffusing Waves in Strongly Scattering Media. Physical Review Letters, 1997, 79, 3166-3169.	2.9	66
46	Phononic crystals. Physica Status Solidi (B): Basic Research, 2004, 241, 3454-3462.	0.7	66
47	Nodal rings and drumhead surface states in phononic crystals. Nature Communications, 2019, 10, 1769.	5. 8	66
48	Group velocity of acoustic waves in strongly scattering media: Dependence on the volume fraction of scatterers. Physical Review E, 1998, 58, 6626-6636.	0.8	65
49	Negative refraction imaging of acoustic waves by a two-dimensional three-component phononic crystal. Physical Review B, 2006, 73, .	1.1	65
50	Coupling of cavity modes and guiding modes in two-dimensional phononic crystals. Solid State Communications, 2005, 133, 397-402.	0.9	60
51			
	Experimental demonstration of acoustic semimetal with topologically charged nodal surface. Science Advances, 2020, 6, eaav2360.	4.7	60
52		0.9	59
52 53	Advances, 2020, 6, eaav2360. The layer multiple-scattering method for calculating transmission coefficients of 2D phononic		

#	Article	IF	Citations
55	Hybrid-Order Topological Insulators in a Phononic Crystal. Physical Review Letters, 2021, 126, 156801.	2.9	57
56	Bending and branching of acoustic waves in two-dimensional phononic crystals with linear defects. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 338, 413-419.	0.9	55
57	Acoustic wave transmission through a bull's eye structure. Applied Physics Letters, 2008, 92, .	1.5	54
58	Subwavelength imaging of acoustic waves by a canalization mechanism in a two-dimensional phononic crystal. Applied Physics Letters, 2008, 93, .	1.5	53
59	Acoustic transmission through asymmetric grating structures made of cylinders. Journal of Applied Physics, 2012, 111, .	1.1	53
60	Acoustic spin-Chern insulator induced by synthetic spin–orbit coupling with spin conservation breaking. Nature Communications, 2020, 11, 3227.	5.8	52
61	Observation of quadratic Weyl points and double-helicoid arcs. Nature Communications, 2020, 11, 1820.	5.8	50
62	Unidirectional transmission of acoustic waves based on asymmetric excitation of Lamb waves. Applied Physics Letters, 2013 , 102 , .	1.5	49
63	Probing Weyl Physics with One-Dimensional Sonic Crystals. Physical Review Letters, 2019, 122, 136802.	2.9	48
64	Wettability of urea-doped TiO2 nanoparticles and their high electrorheological effects. Journal of Sol-Gel Science and Technology, 2008, 47, 311-315.	1.1	47
65	Nonleaky surface acoustic waves on a textured rigid surface. Physical Review B, 2011, 83, .	1.1	47
66	Magnetically responsive elastic microspheres. Applied Physics Letters, 2008, 92, .	1.5	46
67	Observation of valley-selective microwave transport in photonic crystals. Applied Physics Letters, 2017, 111, .	1.5	46
68	Tunable transmission spectra of acoustic waves through double phononic crystal slabs. Applied Physics Letters, 2008, 92, .	1.5	45
69	Elastic Waves Scattering without Conversion in Metamaterials with Simultaneous Zero Indices for Longitudinal and Transverse Waves. Physical Review Letters, 2015, 115, 175502.	2.9	45
70	Acoustic square-root topological states. Physical Review B, 2020, 102, .	1.1	45
71	Experimental determination for resonance-induced transmission of acoustic waves through subwavelength hole arrays. Journal of Applied Physics, 2008, 104, .	1.1	44
72	Focusing of spoof surface-acoustic-waves by a gradient-index structure. Journal of Applied Physics, 2013, 114, .	1.1	44

#	Article	IF	CITATIONS
73	Graded negative index lens with designable focal length by phononic crystal. Journal Physics D: Applied Physics, 2009, 42, 185505.	1.3	41
74	Acoustic Dirac degeneracy and topological phase transitions realized by rotating scatterers. Journal of Applied Physics, 2018, 123, .	1.1	41
75	Facile synthesis of PANI-modified CoFe2O4–TiO2 hierarchical flower-like nanoarchitectures with high photocatalytic activity. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	40
76	Topological dislocation modes in three-dimensional acoustic topological insulators. Nature Communications, 2022, 13, 508.	5.8	40
77	Flat superlens by using negative refraction in two-dimensional phononic crystals. Solid State Communications, 2007, 142, 177-180.	0.9	39
78	Surface acoustic waves in two-dimensional phononic crystals: Dispersion relation and the eigenfield distribution of surface modes. Physical Review B, 2007, 76, .	1.1	38
79	Negative Refraction and Partition in Acoustic Valley Materials of a Square Lattice. Physical Review Applied, 2019, 12, .	1.5	38
80	Symmetry-enforced three-dimensional Dirac phononic crystals. Light: Science and Applications, 2020, 9, 38.	7.7	38
81	Broadband asymmetric acoustic transmission by a plate with quasi-periodic surface ridges. Applied Physics Letters, 2014, 105, .	1.5	37
82	Valley-projected edge modes observed in underwater sonic crystals. Applied Physics Letters, 2019, 114, .	1.5	37
83	Multiple-scattering theory for out-of-plane propagation of elastic waves in two-dimensional phononic crystals. Journal of Physics Condensed Matter, 2005, 17, 3735-3757.	0.7	36
84	Rotational manipulation by acoustic radiation torque of high-order vortex beams generated by an artificial structured plate. Applied Physics Letters, $2018,113,.$	1.5	35
85	Defect states in 2D acoustic band-gap materials with bend-shaped linear defects. Solid State Communications, 2004, 130, 67-71.	0.9	34
86	Acoustic trapping of particle by a periodically structured stiff plate. Applied Physics Letters, 2011, 99, .	1.5	34
87	Observation of corner states in second-order topological electric circuits. Physical Review B, 2020, 102, .	1.1	34
88	Acoustic Bloch oscillations in a two-dimensional phononic crystal. Physical Review E, 2007, 76, 056605.	0.8	33
89	3D Hinge Transport in Acoustic Higher-Order Topological Insulators. Physical Review Letters, 2021, 127, 255501.	2.9	32
90	Transmission enhancement of acoustic waves through a thin hard plate embedded with elastic inclusions. Applied Physics Letters, 2012, 101, .	1.5	31

#	Article	IF	CITATIONS
91	Surface Resonant-States-Enhanced Acoustic Wave Tunneling in Two-Dimensional Phononic Crystals. Physical Review Letters, 2007, 99, 044301.	2.9	29
92	Dexterous acoustic trapping and patterning of particles assisted by phononic crystal plate. Applied Physics Letters, 2015, 106, .	1.5	29
93	Ideal Type-II Weyl Phase and Topological Transition in Phononic Crystals. Physical Review Letters, 2020, 124, 206802.	2.9	29
94	Broadband transmission enhancement of acoustic waves through a hybrid grating. Applied Physics Letters, 2012, 100, .	1.5	28
95	Acoustic Topological Transport and Refraction in a Kekul $ ilde{A}$ © Lattice. Physical Review Applied, 2019, 11 , .	1.5	28
96	Acoustic tweezers and motor for living cells. Applied Physics Letters, 2020, 116, .	1.5	28
97	Guiding acoustic waves with graded phononic crystals. Solid State Communications, 2008, 148, 74-77.	0.9	26
98	Surface morphology and raman analysis of the polyimide film aged under bipolar pulse voltage. Polymer Engineering and Science, 2013, 53, 1536-1541.	1.5	25
99	Localized states of acoustic waves in three-dimensional periodic composites with point defects. European Physical Journal B, 2003, 34, 265-268.	0.6	24
100	Acoustic collimating beams by negative refraction in two-dimensional phononic crystal. Journal of Applied Physics, 2009, 105, .	1.1	24
101	Acoustic band gaps for a two-dimensional periodic array of solid cylinders in viscous liquid. Journal of Physics Condensed Matter, 2003, 15, 8207-8212.	0.7	23
102	Peculiar transmission property of acoustic waves in a one-dimensional layered phononic crystal. Physica B: Condensed Matter, 2007, 390, 159-166.	1.3	23
103	Nodal-Chain Semimetal States and Topological Focusing in Phononic Crystals. Physical Review Applied, 2020, 13, .	1.5	22
104	Experimental Observation of Non-Abelian Earring Nodal Links in Phononic Crystals. Physical Review Letters, 2022, 128, .	2.9	22
105	Phononic-Crystal-Enabled Dynamic Manipulation of Microparticles and Cells in an Acoustofluidic Channel. Physical Review Applied, 2020, 13, .	1.5	21
106	Bound state in the continuum in topological inductor–capacitor circuit. Applied Physics Letters, 2020, 116, .	1.5	20
107	Pseudomagnetic Fields Enabled Manipulation of On-Chip Elastic Waves. Physical Review Letters, 2021, 127, 136401.	2.9	19
108	Parallel-field electrorheological clutch: Enhanced high shear rate performance. Applied Physics Letters, 2005, 87, 104106.	1.5	18

#	Article	IF	CITATIONS
109	Improving imaging resolution of a phononic crystal lens by employing acoustic surface waves. Journal of Applied Physics, 2009, 106, 026105.	1.1	18
110	Directional excitation of the designer surface acoustic waves. Applied Physics Letters, 2015, 106, .	1.5	18
111	Straight nodal lines and waterslide surface states observed in acoustic metacrystals. Physical Review B, 2019, 100, .	1.1	18
112	Acoustic spin-1 Weyl semimetal. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	18
113	Dirac points and the transition towards Weyl points in three-dimensional sonic crystals. Light: Science and Applications, 2020, 9, 201.	7.7	18
114	Research Update: Polyimide/CaCu3Ti4O12 nanofiber functional hybrid films with improved dielectric properties. APL Materials, 2013, 1 , .	2,2	17
115	Theoretical Study of Large-Angle Bending Transport of Microparticles by 2D Acoustic Half-Bessel Beams. Scientific Reports, 2015, 5, 13063.	1.6	17
116	Negative refraction imaging of solid acoustic waves by two-dimensional three-component phononic crystal. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 3861-3867.	0.9	16
117	Applications of antireflection coatings in sonic crystal-based acoustic devices. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 1348-1351.	0.9	16
118	Extraordinary acoustic shielding by a monolayer of periodical polymethyl methacrylate cylinders immersed in water. Journal of Applied Physics, $2011,110,.$	1.1	16
119	Acoustic manipulating of capsule-shaped particle assisted by phononic crystal plate. Applied Physics Letters, 2018, 112, .	1.5	16
120	Acoustic higher-order topology derived from first-order with built-in Zeeman-like fields. Science Bulletin, 2022, 67, 488-494.	4.3	16
121	Non-Hermitian second-order topology induced by resistances in electric circuits. Physical Review B, 2022, 105, .	1.1	16
122	Acoustically driven particle delivery assisted by a graded grating plate. Applied Physics Letters, 2017, 111, 031903.	1.5	15
123	Enhanced and directional water wave emission by embedded sources. Wave Motion, 2010, 47, 131-138.	1.0	14
124	Experimental demonstration of surface acoustic waves in two-dimensional phononic crystals with fluid background. Journal of Applied Physics, 2009, 106, 044512.	1,1	13
125	Effective medium of periodic fluid-solid composites. Europhysics Letters, 2012, 98, 54001.	0.7	13
126	Acoustic Valley Spin Chern Insulators. Physical Review Applied, 2021, 16, .	1.5	13

#	Article	IF	Citations
127	Highly directional liquid surface wave source based on resonant cavity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2948-2952.	0.9	11
128	The optimum elastic wave band gaps in three dimensional phononic crystals with local resonance. European Physical Journal B, 2004, 42, 477-482.	0.6	10
129	Guiding spoof surface acoustic waves on a monolayer array of rigid cylinders in water. Journal Physics D: Applied Physics, 2016, 49, 125304.	1.3	10
130	Sound-mediated stable configurations for polystyrene particles. Physical Review E, 2017, 96, 052604.	0.8	9
131	Deep subwavelength electromagnetic transparency through dual metallic gratings with ultranarrow slits. Physical Review B, 2013, 87, .	1.1	8
132	Highly efficient isolation of waterborne sound by an air-sealed meta-screen. AIP Advances, 2017, 7, .	0.6	8
133	Acoustically mediated long-range interaction among multiple spherical particles exposed to a plane standing wave. New Journal of Physics, 2016, 18, 113034.	1.2	7
134	Planar Ultrasonic Lenses Formed by Concentric Circular Sandwichedâ€Ring Arrays. Advanced Materials Technologies, 2018, 4, 1800542.	3.0	7
135	Synthesis of polyaniline-Fe3O4 nanocomposites and their conductivity and magnetic properties. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 760-764.	0.4	5
136	Intrinsic anisotropy of the effective acoustic properties in metafluids made of two-dimensional cylinder arrays. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 637-642.	0.9	5
137	Extraordinary lateral beaming of sound from a square-lattice phononic crystal. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 886-889.	0.9	5
138	Realization of acoustic omnidirectional radiation with annular anisotropic zero-density metamaterial. Applied Physics Letters, 2019, 114 , .	1.5	5
139	Trapping sound at corners. Nature Materials, 2019, 18, 98-99.	13.3	5
140	Acoustic Subwavelength Manipulation of Particles with a Quasiperiodic Plate. Physical Review Applied, 2022, 17, .	1.5	5
141	Experimental investigation of shell modes in two-dimensional phononic crystal consisting of hollow cylinders. Journal of Applied Physics, 2010, 107, 064503.	1.1	4
142	Metafluids beyond the Bulk Modulus. Physical Review Letters, 2020, 125, 185502.	2.9	4
143	Model investigation on the probability of QGP formation at different centralities in relativistic heavy ion collisions. Physical Review C, 2009, 80, .	1.1	3
144	Acoustic Tamm states in double 1D phononic crystals. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 374-376.	0.4	3

#	Article	IF	CITATIONS
145	Zener tunneling of acoustic waves in a one-dimensional phononic crystal. Solid State Communications, 2007, 144, 433-436.	0.9	2
146	Acoustic Zitterbewegung in ordinary sonic crystals: A general classical description. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 4933-4936.	0.9	2
147	The synthesis and electrorheological properties of BaTiO3-coated PMMA microspheres. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 85-87.	0.4	1
148	Metasurfaces: Coding Acoustic Metasurfaces (Adv. Mater. 6/2017). Advanced Materials, 2017, 29, .	11.1	1
149	Acoustic Funnel and Buncher for Nanoparticle Injection. Physical Review Applied, 2019, 11, .	1.5	1
150	Off-axis directional acoustic wave beaming control by an asymmetric rubber heterostructures film deposited on steel plate in water., 2009,,.		0
151	Deep subwavelength electromagnetic transparence through dual metallic gratings with ultranarrow slits. , 2012, , .		0
152	Focusing of ultrasonic waves in water with a flat artificial composite plate. , 2017, , .		0
153	Focusing of ultrasonic waves in water with a flat artificial composite plate. , 2017, , .		0
154	ANALYSIS OF POLARIZATION FORCES AND CONDUCTIVITY EFFECTS IN THE ELECTRORHEOLOGICAL SOLID. , 2005, , .		O