Mousumi Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6118090/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuronal and endothelial transglutaminase-2 expression in experimental autoimmune encephalomyelitis and multiple sclerosis. Neural Regeneration Research, 2022, 17, 1471.	3.0	0
2	Comparative Profiling of TG2 and Its Effectors in Human Relapsing Remitting and Progressive Multiple Sclerosis. Biomedicines, 2022, 10, 1241.	3.2	3
3	Neuronal and Endothelial Transglutaminase-2 Expression during Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Neuroscience, 2021, 461, 140-154.	2.3	5
4	Engineering polysialic acid on Schwann cells using polysialyltransferase gene transfer or purified enzyme exposure for spinal cord injury transplantation. Neuroscience Letters, 2021, 748, 135690.	2.1	2
5	Schwann Cell Transplantation Subdues the Pro-Inflammatory Innate Immune Cell Response after Spinal Cord Injury. International Journal of Molecular Sciences, 2018, 19, 2550.	4.1	32
6	Identifying the Long-Term Role of Inducible Nitric Oxide Synthase after Contusive Spinal Cord Injury Using a Transgenic Mouse Model. International Journal of Molecular Sciences, 2017, 18, 245.	4.1	8
7	Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair. International Journal of Molecular Sciences, 2017, 18, 696.	4.1	58
8	Cyclic AMP is a key regulator of M1 to M2a phenotypic conversion of microglia in the presence of Th2 cytokines. Journal of Neuroinflammation, 2016, 13, 9.	7.2	134
9	The Interplay between Cyclic AMP, MAPK, and NF- <i>ΰ</i> B Pathways in Response to Proinflammatory Signals in Microglia. BioMed Research International, 2015, 2015, 1-18.	1.9	45
10	Peptide-functionalized polymeric nanoparticles for active targeting of damaged tissue in animals with experimental autoimmune encephalomyelitis. Neuroscience Letters, 2015, 602, 126-132.	2.1	21
11	The role of the serotonergic system in locomotor recovery after spinal cord injury. Frontiers in Neural Circuits, 2014, 8, 151.	2.8	96
12	The Therapeutic Profile of Rolipram, PDE Target and Mechanism of Action as a Neuroprotectant following Spinal Cord Injury. PLoS ONE, 2012, 7, e43634.	2.5	59
13	Extensive cell migration, axon regeneration, and improved function with polysialic acidâ€modified Schwann cells after spinal cord injury. Glia, 2012, 60, 979-992.	4.9	71
14	Proinflammatory cytokine regulation of cyclic AMPâ€phosphodiesterase 4 signaling in microglia <i>in vitro</i> and following CNS injury. Glia, 2012, 60, 1839-1859.	4.9	74
15	Cyclic AMP-specific PDEs: A promising therapeutic target for CNS repair. Translational Neuroscience, 2010, 1, .	1.4	6
16	Suspension Matrices for Improved Schwann-Cell Survival after Implantation into the Injured Rat Spinal Cord. Journal of Neurotrauma, 2010, 27, 789-801.	3.4	67