
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6117386/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nanoparticles Mimicking Viral Surface Topography for Enhanced Cellular Delivery. Advanced<br>Materials, 2013, 25, 6233-6237.                                                                            | 11.1 | 174       |
| 2  | Improved hydrogen storage in the modified metal-organic frameworks by hydrogen spillover effect.<br>International Journal of Hydrogen Energy, 2007, 32, 4005-4010.                                      | 3.8  | 160       |
| 3  | Adsorption mechanism of oil components on water-wet mineral surface: A molecular dynamics simulation study. Energy, 2013, 59, 295-300.                                                                  | 4.5  | 118       |
| 4  | Molecular dynamics simulation on volume swelling of CO2–alkane system. Fuel, 2015, 143, 194-201.                                                                                                        | 3.4  | 67        |
| 5  | Highly efficient water desalination in carbon nanocones. Carbon, 2018, 129, 374-379.                                                                                                                    | 5.4  | 66        |
| 6  | Displacement Mechanism of Oil in Shale Inorganic Nanopores by Supercritical Carbon Dioxide from<br>Molecular Dynamics Simulations. Energy & Fuels, 2017, 31, 738-746.                                   | 2.5  | 62        |
| 7  | Competitive adsorption and diffusion of CH4/CO2 binary mixture within shale organic nanochannels.<br>Journal of Natural Gas Science and Engineering, 2018, 53, 329-336.                                 | 2.1  | 62        |
| 8  | Enhanced oil recovery mechanism of CO 2 water-alternating-gas injection in silica nanochannel. Fuel, 2017, 190, 253-259.                                                                                | 3.4  | 59        |
| 9  | Nanoconfined deep eutectic solvent in laminated MXene for efficient CO2 separation. Chemical Engineering Journal, 2021, 405, 126961.                                                                    | 6.6  | 56        |
| 10 | Oil detachment mechanism in CO 2 flooding from silica surface: Molecular dynamics simulation.<br>Chemical Engineering Science, 2017, 164, 17-22.                                                        | 1.9  | 50        |
| 11 | A graphene-like membrane with an ultrahigh water flux for desalination. Nanoscale, 2017, 9,<br>18951-18958.                                                                                             | 2.8  | 46        |
| 12 | Study on the transformation from linear to branched wormlike micelles: An insight from molecular dynamics simulation. Journal of Colloid and Interface Science, 2017, 494, 47-53.                       | 5.0  | 44        |
| 13 | Enantioselective Molecular Transport in Multilayer Graphene Nanopores. Nano Letters, 2017, 17,<br>6742-6746.                                                                                            | 4.5  | 42        |
| 14 | Molecular insight into the miscible mechanism of CO2/C10 in bulk phase and nanoslits. International<br>Journal of Heat and Mass Transfer, 2019, 141, 643-650.                                           | 2.5  | 40        |
| 15 | Electrical field facilitates selective transport of CO <sub>2</sub> through a laminated<br>MoS <sub>2</sub> supported ionic liquid membrane. Journal of Materials Chemistry A, 2019, 7,<br>10041-10046. | 5.2  | 40        |
| 16 | Static and dynamic behavior of CO2 enhanced oil recovery in nanoslits: Effects of mineral type and oil components. International Journal of Heat and Mass Transfer, 2020, 153, 119583.                  | 2.5  | 40        |
| 17 | A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation. Nature Communications, 2020, 11, 1633.                                                   | 5.8  | 40        |
| 18 | CO <sub>2</sub> -philic WS <sub>2</sub> laminated membranes with a nanoconfined ionic liquid.<br>Journal of Materials Chemistry A, 2018, 6, 16566-16573.                                                | 5.2  | 39        |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Molecular insight into the fluidity of cement pastes: Nano-boundary lubrication of cementitious materials. Construction and Building Materials, 2022, 316, 125800.                   | 3.2 | 37        |
| 20 | Oil extraction mechanism in CO2 flooding from rough surface: Molecular dynamics simulation.<br>Applied Surface Science, 2019, 494, 80-86.                                            | 3.1 | 35        |
| 21 | Water desalination of a new three-dimensional covalent organic framework: a molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2020, 22, 16978-16984.         | 1.3 | 35        |
| 22 | Photothermalâ€Responsive Microporous Nanosheets Confined Ionic Liquid for Efficient<br>CO <sub>2</sub> Separation. Small, 2020, 16, e2002699.                                        | 5.2 | 33        |
| 23 | Coarse-grained molecular dynamics study on the self-assembly of Gemini surfactants: the effect of spacer length. Physical Chemistry Chemical Physics, 2017, 19, 4462-4468.           | 1.3 | 32        |
| 24 | Oil detachment by modified nanoparticles: A molecular dynamics simulation study. Computational<br>Materials Science, 2019, 170, 109177.                                              | 1.4 | 32        |
| 25 | Unusual, photo-induced self-assembly of azobenzene-containing amphiphiles. Soft Matter, 2014, 10,<br>8758-8764.                                                                      | 1.2 | 31        |
| 26 | The molecular mechanism of the inhibition effects of PVCaps on the growth of sI hydrate: an unstable adsorption mechanism. Physical Chemistry Chemical Physics, 2018, 20, 8326-8332. | 1.3 | 29        |
| 27 | Correlated Rectification Transport in Ultranarrow Charged Nanocones. Journal of Physical Chemistry Letters, 2017, 8, 435-439.                                                        | 2.1 | 28        |
| 28 | How the oil recovery in deep oil reservoirs is affected by injected gas types: A molecular dynamics simulation study. Chemical Engineering Science, 2021, 231, 116286.               | 1.9 | 28        |
| 29 | CO <sub>2</sub> activating hydrocarbon transport across nanopore throat: insights from molecular dynamics simulation. Physical Chemistry Chemical Physics, 2017, 19, 30439-30444.    | 1.3 | 27        |
| 30 | Bottom-up self-assembly of heterotrimeric nanoparticles and their secondary Janus generations.<br>Chemical Science, 2019, 10, 10388-10394.                                           | 3.7 | 26        |
| 31 | Mechanism of asphaltene aggregation induced by supercritical CO <sub>2</sub> : insights from molecular dynamics simulation. RSC Advances, 2017, 7, 50786-50793.                      | 1.7 | 25        |
| 32 | Migration of oil/methane mixture in shale inorganic nano-pore throat: A molecular dynamics simulation study. Journal of Petroleum Science and Engineering, 2020, 187, 106784.        | 2.1 | 24        |
| 33 | Vesicle formation of catanionic mixtures of CTAC/SDS induced by ratio: a coarse-grained molecular dynamic simulation study. RSC Advances, 2016, 6, 13442-13449.                      | 1.7 | 20        |
| 34 | Why synthetic virus-like nanoparticles can achieve higher cellular uptake efficiency?. Nanoscale, 2020,<br>12, 14911-14918.                                                          | 2.8 | 19        |
| 35 | Molecular Insights into the Effect of a Solid Surface on the Stability of a Hydrate Nucleus. Journal of<br>Physical Chemistry C, 2020, 124, 2664-2671.                               | 1.5 | 18        |
| 36 | One-pot production of porous assemblies by PISA of star architecture copolymers: a simulation study.<br>Physical Chemistry Chemical Physics, 2018, 20, 10069-10076.                  | 1.3 | 16        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Molecular insight into the oil charging mechanism in tight reservoirs. Chemical Engineering Science, 2020, 211, 115297.                                                                                 | 1.9 | 15        |
| 38 | Molecular dynamics study of di-CF4 based reverse micelles in supercritical CO <sub>2</sub> . Physical Chemistry Chemical Physics, 2016, 18, 29156-29163.                                                | 1.3 | 14        |
| 39 | The self-assembly structure and the CO <sub>2</sub> -philicity of a hybrid surfactant in supercritical CO <sub>2</sub> : effects of hydrocarbon chain length. Soft Matter, 2016, 12, 8177-8185.         | 1.2 | 14        |
| 40 | lonic liquid gated 2D-CAP membrane for highly efficient CO2/N2 and CO2/CH4 separation. Applied Surface Science, 2019, 494, 477-483.                                                                     | 3.1 | 14        |
| 41 | Optimal aggregation number of reverse micelles in supercritical carbon dioxide: a theoretical perspective. Soft Matter, 2019, 15, 3323-3329.                                                            | 1.2 | 14        |
| 42 | Atypical adsorption of polycarboxylate superplasticizers on calcium silicate hydrate surface:<br>Converting interaction by solvent effects. Construction and Building Materials, 2022, 330, 127160.     | 3.2 | 14        |
| 43 | Cooperative assembly of Janus particles and amphiphilic oligomers: the role of Janus balance.<br>Nanoscale, 2019, 11, 7221-7228.                                                                        | 2.8 | 12        |
| 44 | Insight into the pressure-induced displacement mechanism for selecting efficient nanofluids in various capillaries. Environmental Science: Nano, 2020, 7, 2785-2794.                                    | 2.2 | 11        |
| 45 | Molecular insights into the separation mechanism of imidazole-based ionic liquid supported membranes. Journal of Molecular Liquids, 2021, 340, 117173.                                                  | 2.3 | 11        |
| 46 | Voltage-gated multilayer graphene nanochannel for K+/Na+ separation: A molecular dynamics study.<br>Journal of Molecular Liquids, 2020, 317, 114025.                                                    | 2.3 | 10        |
| 47 | An ion sieving conjugated microporous thermoset ultrathin membrane for high-performance Li-S<br>battery. Energy Storage Materials, 2022, 49, 1-10.                                                      | 9.5 | 10        |
| 48 | Effect of organic salt on the self-assembly of ammonium gemini surfactant: An experiment and<br>simulation study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 548, 198-205. | 2.3 | 9         |
| 49 | Prediction of efficient promoter molecules of sH hydrogen hydrate: An ab initio study. Chemical Physics, 2019, 516, 15-21.                                                                              | 0.9 | 9         |
| 50 | Composite Nanotube Ring Structures Formed by Two-Step Self-Assembly for Drug Loading/Release.<br>Langmuir, 2019, 35, 3108-3115.                                                                         | 1.6 | 9         |
| 51 | Combined DFT and kinetic Monte Carlo study of a bridging-spillover mechanism on fluorine-decorated graphene. Physical Chemistry Chemical Physics, 2021, 23, 2384-2391.                                  | 1.3 | 9         |
| 52 | Molecular-Scale Design of Hydrocarbon Surfactant Self-Assembly in Supercritical CO <sub>2</sub> .<br>Langmuir, 2017, 33, 5291-5297.                                                                     | 1.6 | 8         |
| 53 | Two-dimensional hydrogen hydrates: structure and stability. Physical Chemistry Chemical Physics, 2020, 22, 5774-5784.                                                                                   | 1.3 | 8         |
| 54 | Molecular insight into the aggregation and dispersion behavior of modified nanoparticles. Journal of<br>Petroleum Science and Engineering, 2020, 191, 107193.                                           | 2.1 | 8         |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Tuning the self-assembly of surfactants by the confinement of carbon nanotube arrays: a cornucopia of lamellar phase variants. Nanoscale, 2015, 7, 6069-6074.                                     | 2.8 | 7         |
| 56 | Alternating electric field-induced ion current rectification and electroosmotic pump in ultranarrow charged carbon nanocones. Physical Chemistry Chemical Physics, 2018, 20, 27910-27916.         | 1.3 | 7         |
| 57 | Molecular insight into the oil displacement mechanism of gas flooding in deep oil reservoir. Chemical<br>Physics Letters, 2021, 783, 139044.                                                      | 1.2 | 7         |
| 58 | Dissipative Particle Dynamics Simulation on Vesicles Self-Assembly Controlled by Terminal Groups.<br>Journal of Physical Chemistry B, 2018, 122, 10607-10614.                                     | 1.2 | 6         |
| 59 | Polymerization-Induced Self-Assembly of Comb-like Amphiphilic Copolymers into Onion-like Vesicles.<br>Macromolecules, 2021, 54, 7448-7459.                                                        | 2.2 | 6         |
| 60 | Molecular insights into the resistance of phospholipid heads to the membrane penetration of graphene nanosheets. Nanoscale, 2022, 14, 5384-5391.                                                  | 2.8 | 6         |
| 61 | Shape transition of water-in-CO <sub>2</sub> reverse micelles controlled by the surfactant midpiece.<br>Physical Chemistry Chemical Physics, 2018, 20, 15535-15542.                               | 1.3 | 5         |
| 62 | Manipulating Hybrid Nanostructures by the Cooperative Assembly of Amphiphilic Oligomers and Triblock Janus Nanoparticles. Journal of Physical Chemistry Letters, 2020, 11, 3369-3375.             | 2.1 | 5         |
| 63 | Molecular mechanism of formation of the face-sharing double cages in structure-I methane hydrate.<br>Chemical Physics Letters, 2018, 691, 155-162.                                                | 1.2 | 4         |
| 64 | Quantum Chemical Study of the Carbon Dioxide-Philicity of Surfactants: Effects of Tail<br>Functionalization. Langmuir, 2020, 36, 15352-15361.                                                     | 1.6 | 4         |
| 65 | The biphasic effect of ABA triblock copolymers on the self-assembly of surfactants: insight from dissipative particle dynamics. Molecular Systems Design and Engineering, 2019, 4, 921-928.       | 1.7 | 3         |
| 66 | Novel joint catalytic properties of Fe and N co-doped graphene for CO oxidation. Physical Chemistry Chemical Physics, 2020, 22, 28376-28382.                                                      | 1.3 | 3         |
| 67 | Stability of CH4, CO2, and H2S in two-dimensional clathrate hydrates. Computational Materials Science, 2021, 188, 110174.                                                                         | 1.4 | 1         |
| 68 | Manipulating the interactions between the lipid bilayer and triblock Janus nanoparticles: insight from dissipative particle dynamics. Molecular Systems Design and Engineering, 2021, 6, 156-162. | 1.7 | 1         |
| 69 | A bottom-up strategy to surface assembly: Second growth from metal-rich embryos. Materials<br>Chemistry and Physics, 2018, 204, 228-235.                                                          | 2.0 | 0         |