
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6116892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defining the clinical course of multiple sclerosis. Neurology, 2014, 83, 278-286.	1.1	2,344
2	Multiple Sclerosis. New England Journal of Medicine, 2018, 378, 169-180.	27.0	1,653
3	Rituximab in patients with primary progressive multiple sclerosis: Results of a randomized doubleâ€blind placeboâ€controlled multicenter trial. Annals of Neurology, 2009, 66, 460-471.	5.3	815
4	Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS) Tj ETQq0 0 545-556.	0 rgBT /Ov 10.2	verlock 10 Tf 707
5	Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet, The, 2011, 378, 1779-1787.	13.7	636
6	Relation of Visual Function to Retinal Nerve Fiber Layer Thickness in Multiple Sclerosis. Ophthalmology, 2006, 113, 324-332.	5.2	589
7	Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurology, The, 2010, 9, 921-932.	10.2	503
8	Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science, 2018, 360, 449-453.	12.6	489
9	Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17414-17419.	7.1	470
10	Abnormal B ell cytokine responses a trigger of T ell–mediated disease in MS?. Annals of Neurology, 2010, 67, 452-461.	5.3	428
11	Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurology, The, 2017, 16, 797-812.	10.2	397
12	The voltage-gated Kv1.3 K+ channel in effector memory T cells as new target for MS. Journal of Clinical Investigation, 2003, 111, 1703-1713.	8.2	368
13	Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nature Reviews Neurology, 2009, 5, 256-266.	10.1	352
14	Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurology, The, 2014, 13, 657-665.	10.2	339
15	Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Annals of Neurology, 2010, 67, 749-760.	5.3	308
16	A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis. Nature, 2021, 597, 709-714.	27.8	307
17	Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain, 2012, 135, 521-533.	7.6	306
18	Optical coherence tomography reflects brain atrophy in multiple sclerosis: A fourâ€year study. Annals of Neurology, 2015, 78, 801-813.	5.3	304

#	Article	IF	CITATIONS
19	Statistical normalization techniques for magnetic resonance imaging. NeuroImage: Clinical, 2014, 6, 9-19.	2.7	300
20	Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain, 2011, 134, 518-533.	7.6	291
21	A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. NeuroImage, 2010, 49, 1524-1535.	4.2	287
22	Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nature Clinical Practice Neurology, 2008, 4, 664-675.	2.5	282
23	Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurology, The, 2012, 11, 963-972.	10.2	267
24	Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurology, The, 2016, 15, 574-584.	10.2	266
25	Retinal layer segmentation of macular OCT images using boundary classification. Biomedical Optics Express, 2013, 4, 1133.	2.9	265
26	Ganglion Cell Loss in Relation to Visual Disability in Multiple Sclerosis. Ophthalmology, 2012, 119, 1250-1257.	5.2	260
27	Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology, 2015, 85, 18-28.	1.1	247
28	Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nature Communications, 2019, 10, 3887.	12.8	245
29	Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Multiple Sclerosis Journal, 2011, 17, 1449-1463.	3.0	239
30	Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Multiple Sclerosis Journal, 2015, 21, 163-170.	3.0	237
31	Targeting Effector Memory T Cells with a Selective Peptide Inhibitor of Kv1.3 Channels for Therapy of Autoimmune Diseases. Molecular Pharmacology, 2005, 67, 1369-1381.	2.3	232
32	Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13588-13593.	7.1	218
33	Longitudinal multiple sclerosis lesion segmentation: Resource and challenge. NeuroImage, 2017, 148, 77-102.	4.2	215
34	Active MS is associated with accelerated retinal ganglion cell/inner plexiform layer thinning. Neurology, 2013, 80, 47-54.	1.1	200
35	Relationships Between Retinal Axonal and Neuronal Measures and Global Central Nervous System Pathology in Multiple Sclerosis. JAMA Neurology, 2013, 70, 34.	9.0	197
36	High resolution diffusion tensor imaging of axonal damage in focal inflammatory and demyelinating lesions in rat spinal cord. Brain, 2007, 130, 2199-2210.	7.6	183

#	Article	IF	CITATIONS
37	Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain, 2013, 136, 2888-2903.	7.6	174
38	The voltage-gated potassium channel Kv1.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11094-11099.	7.1	172
39	Healthâ€related quality of life in multiple sclerosis: effects of natalizumab. Annals of Neurology, 2007, 62, 335-346.	5.3	172
40	Diffusion Tensor Magnetic Resonance Imaging of Wallerian Degeneration in Rat Spinal Cord after Dorsal Root Axotomy. Journal of Neuroscience, 2009, 29, 3160-3171.	3.6	167
41	Macular Volume Determined by Optical Coherence Tomography as a Measure of Neuronal Loss in Multiple Sclerosis. Archives of Neurology, 2009, 66, 1366-72.	4.5	165
42	DeepHarmony: A deep learning approach to contrast harmonization across scanner changes. Magnetic Resonance Imaging, 2019, 64, 160-170.	1.8	150
43	Increases in soluble VCAM-1 correlate with a decrease in MRI lesions in multiple sclerosis treated with interferon ?-1b. Annals of Neurology, 1997, 41, 669-674.	5.3	149
44	A defect of sphingolipid metabolism modifies the properties of normal appearing white matter in multiple sclerosis. Brain, 2008, 131, 3092-3102.	7.6	148
45	Optical Coherence Tomography (OCT): Imaging the Visual Pathway as a Model for Neurodegeneration. Neurotherapeutics, 2011, 8, 117-132.	4.4	145
46	Damage to the Optic Radiation in Multiple Sclerosis Is Associated With Retinal Injury and Visual Disability. Archives of Neurology, 2009, 66, 998-1006.	4.5	142
47	Human iPSC-derived blood-brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials, 2019, 190-191, 24-37.	11.4	141
48	Association of Cortical Lesion Burden on 7-T Magnetic Resonance Imaging With Cognition and Disability in Multiple Sclerosis. JAMA Neurology, 2015, 72, 1004.	9.0	140
49	PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1686-1691.	7.1	140
50	In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology, 2013, 80, 1406-1414.	1.1	138
51	Sensorimotor dysfunction in multiple sclerosis and column-specific magnetization transfer-imaging abnormalities in the spinal cord. Brain, 2009, 132, 1200-1209.	7.6	130
52	Cerebrospinal fluid ceramides from patients with multiple sclerosis impair neuronal bioenergetics. Brain, 2014, 137, 2271-2286.	7.6	128
53	Diagnosis and management of multiple sclerosis. American Family Physician, 2004, 70, 1935-44.	0.1	128
54	Safety and immunologic effects of high- vs low-dose cholecalciferol in multiple sclerosis. Neurology, 2016, 86, 382-390.	1.1	124

#	Article	IF	CITATIONS
55	Axonal Protective Effects of the Myelin-Associated Glycoprotein. Journal of Neuroscience, 2009, 29, 630-637.	3.6	121
56	IL-6 induces regionally selective spinal cord injury in patients with the neuroinflammatory disorder transverse myelitis. Journal of Clinical Investigation, 2005, 115, 2731-2741.	8.2	115
57	Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell, 2018, 175, 1679-1687.e7.	28.9	115
58	Retinal Imaging by Laser Polarimetry and Optical Coherence Tomography Evidence of Axonal Degeneration in Multiple Sclerosis. Archives of Neurology, 2008, 65, 924-8.	4.5	114
59	Safety and efficacy of opicinumab in patients with relapsing multiple sclerosis (SYNERGY): a randomised, placebo-controlled, phase 2 trial. Lancet Neurology, The, 2019, 18, 845-856.	10.2	110
60	Bile acid metabolism is altered in multiple sclerosis and supplementation ameliorates neuroinflammation. Journal of Clinical Investigation, 2020, 130, 3467-3482.	8.2	109
61	Differentiating neuromyelitis optica from other causes of longitudinally extensive transverse myelitis on spinal magnetic resonance imaging. Multiple Sclerosis Journal, 2016, 22, 302-311.	3.0	106
62	Optimal intereye difference thresholds by optical coherence tomography in multiple sclerosis: An international study. Annals of Neurology, 2019, 85, 618-629.	5.3	104
63	Reproducibility of high-resolution optical coherence tomography in multiple sclerosis. Multiple Sclerosis Journal, 2010, 16, 829-839.	3.0	98
64	Revisiting Brain Atrophy and Its Relationship to Disability in Multiple Sclerosis. PLoS ONE, 2012, 7, e37049.	2.5	97
65	Neuropsychiatric syndromes of multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 697-708.	1.9	97
66	Inhibition of FLT3 signaling targets DCs to ameliorate autoimmune disease. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16741-16746.	7.1	96
67	APOSTEL 2.0 Recommendations for Reporting Quantitative Optical Coherence Tomography Studies. Neurology, 2021, 97, 68-79.	1.1	96
68	Volumetric Analysis from a Harmonized Multisite Brain MRI Study of a Single Subject with Multiple Sclerosis. American Journal of Neuroradiology, 2017, 38, 1501-1509.	2.4	95
69	Evaluating White Matter Lesion Segmentations with Refined SÃ,rensen-Dice Analysis. Scientific Reports, 2020, 10, 8242.	3.3	94
70	Peginterferon beta-1a in multiple sclerosis: 2-year results from ADVANCE. Multiple Sclerosis Journal, 2015, 21, 1025-1035.	3.0	91
71	Paramagnetic Rim Lesions are Specific to Multiple Sclerosis: An International Multicenter 3T MRI Study. Annals of Neurology, 2020, 88, 1034-1042.	5.3	89
72	Characterization of the Functional Properties of the Voltage-Gated Potassium Channel Kv1.3 in Human CD4+ T Lymphocytes. Journal of Immunology, 2007, 179, 4563-4570.	0.8	86

#	Article	IF	CITATIONS
73	Transfer of Myelin-Reactive Th17 Cells Impairs Endogenous Remyelination in the Central Nervous System of Cuprizone-Fed Mice. Journal of Neuroscience, 2015, 35, 8626-8639.	3.6	86
74	Discordant humoral and T cell immune responses to SARS-CoV-2 vaccination in people with multiple sclerosis on anti-CD20 therapy. EBioMedicine, 2021, 73, 103636.	6.1	85
75	Multiparametric magnetic resonance imaging analysis of the corticospinal tract in multiple sclerosisâ~†. NeuroImage, 2007, 38, 271-279.	4.2	84
76	Photoreceptor layer thinning in idiopathic Parkinson's disease. Movement Disorders, 2014, 29, 1163-1170.	3.9	84
77	In vivo assessment of retinal neuronal layers in multiple sclerosis with manual and automated optical coherence tomography segmentation techniques. Journal of Neurology, 2012, 259, 2119-2130.	3.6	83
78	Lineage tracing reveals dynamic changes in oligodendrocyte precursor cells following cuprizoneâ€induced demyelination. Glia, 2017, 65, 2087-2098.	4.9	81
79	OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI. NeuroImage: Clinical, 2013, 2, 402-413.	2.7	80
80	Magnetic susceptibility contrast variations in multiple sclerosis lesions. Journal of Magnetic Resonance Imaging, 2016, 43, 463-473.	3.4	79
81	Metabolic alterations in multiple sclerosis and the impact of vitamin D supplementation. JCI Insight, 2017, 2, .	5.0	79
82	Reduction of Disease Activity and Disability With High-Dose Cyclophosphamide in Patients With Aggressive Multiple Sclerosis. Archives of Neurology, 2008, 65, 1044-51.	4.5	78
83	Varicella-zoster virus encephalitis and vasculopathy in a patient treated with fingolimod. Neurology, 2012, 79, 2002-2004.	1.1	75
84	Aquaporin-4 IgG seropositivity is associated with worse visual outcomes after optic neuritis than MOG-IgG seropositivity and multiple sclerosis, independent of macular ganglion cell layer thinning. Multiple Sclerosis Journal, 2020, 26, 1360-1371.	3.0	75
85	Increased serum levels of soluble CD95 (APO-1/Fas) in relapsing-remitting multiple sclerosis. Annals of Neurology, 1998, 43, 116-120.	5.3	73
86	Lesion Heterogeneity on High-Field Susceptibility MRI Is Associated with Multiple Sclerosis Severity. American Journal of Neuroradiology, 2016, 37, 1447-1453.	2.4	73
87	Disease-modifying therapies modulate retinal atrophy in multiple sclerosis. Neurology, 2017, 88, 525-532.	1.1	73
88	Reproducibility of Optical Coherence Tomography in Multiple Sclerosis. Archives of Neurology, 2008, 65, 1218-22.	4.5	72
89	The Impact of Utilizing Different Optical Coherence Tomography Devices for Clinical Purposes and in Multiple Sclerosis Trials. PLoS ONE, 2011, 6, e22947.	2.5	72
90	Spinal cord quantitative MRI discriminates between disability levels in multiple sclerosis. Neurology, 2013, 80, 540-547.	1.1	72

#	Article	IF	CITATIONS
91	Anti-CD20 therapy depletes activated myelin-specific CD8 ⁺ T cells in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25800-25807.	7.1	71
92	Emerging Applications of Optical Coherence Tomography Angiography (OCTA) in neurological research. Eye and Vision (London, England), 2018, 5, 11.	3.0	69
93	Multiparametric MRI correlates of sensorimotor function in the spinal cord in multiple sclerosis. Multiple Sclerosis Journal, 2013, 19, 427-435.	3.0	68
94	Longitudinally extensive optic neuritis as an MRI biomarker distinguishes neuromyelitis optica from multiple sclerosis. Journal of the Neurological Sciences, 2015, 355, 59-63.	0.6	68
95	Brain and retinal atrophy in African-Americans versus Caucasian-Americans with multiple sclerosis: a longitudinal study. Brain, 2018, 141, 3115-3129.	7.6	67
96	Remyelination alters the pattern of myelin in the cerebral cortex. ELife, 2020, 9, .	6.0	67
97	A selective thyroid hormone β receptor agonist enhances human and rodent oligodendrocyte differentiation. Clia, 2014, 62, 1513-1529.	4.9	66
98	Alterations in the retinal vasculature occur in multiple sclerosis and exhibit novel correlations with disability and visual function measures. Multiple Sclerosis Journal, 2020, 26, 815-828.	3.0	66
99	AQP4-IgG and MOG-IgG Related Optic Neuritis—Prevalence, Optical Coherence Tomography Findings, and Visual Outcomes: A Systematic Review and Meta-Analysis. Frontiers in Neurology, 2020, 11, 540156.	2.4	66
100	Kv1.3 Deletion Biases T Cells toward an Immunoregulatory Phenotype and Renders Mice Resistant to Autoimmune Encephalomyelitis. Journal of Immunology, 2012, 188, 5877-5886.	0.8	65
101	Investigating Axonal Damage in Multiple Sclerosis by Diffusion Tensor Spectroscopy. Journal of Neuroscience, 2012, 32, 6665-6669.	3.6	63
102	Applications of a deep learning method for anti-aliasing and super-resolution in MRI. Magnetic Resonance Imaging, 2019, 64, 132-141.	1.8	63
103	Targeting Repulsive Guidance Molecule A to Promote Regeneration and Neuroprotection in Multiple Sclerosis. Cell Reports, 2015, 10, 1887-1898.	6.4	62
104	Automatic segmentation of microcystic macular edema in OCT. Biomedical Optics Express, 2015, 6, 155.	2.9	60
105	Reproducibility of tractâ€specific magnetization transfer and diffusion tensor imaging in the cervical spinal cord at 3 tesla. NMR in Biomedicine, 2010, 23, 207-217.	2.8	59
106	<i>Alu</i> insertion variants alter mRNA splicing. Nucleic Acids Research, 2019, 47, 421-431.	14.5	58
107	Retinal Ganglion Cell Layer Volumetric Assessment by Spectral-Domain Optical Coherence Tomography in Multiple Sclerosis: Application of a High-Precision Manual Estimation Technique. Journal of Neuro-Ophthalmology, 2011, 31, 260-264.	0.8	57
108	Inhibition of Glutamate Carboxypeptidase II (GCPII) activity as a treatment for cognitive impairment in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20101-20106.	7.1	57

#	Article	IF	CITATIONS
109	Systemic Tolerance Mediated by Melanoma Brain Tumors Is Reversible by Radiotherapy and Vaccination. Clinical Cancer Research, 2016, 22, 1161-1172.	7.0	57
110	Granzyme B mediates neurotoxicity through a Gâ€proteinâ€coupled receptor. FASEB Journal, 2006, 20, 1209-1211.	0.5	56
111	Natalizumab plus interferon beta-1a reduces lesion formation in relapsing multiple sclerosis. Journal of the Neurological Sciences, 2010, 292, 28-35.	0.6	56
112	Quantitative measures detect sensory and motor impairments in multiple sclerosis. Journal of the Neurological Sciences, 2011, 305, 103-111.	0.6	56
113	PEGylation of Interferon-Î ² -1a. CNS Drugs, 2012, 26, 205-214.	5.9	56
114	KLF4 Modulates Expression of IL-6 in Dendritic Cells via Both Promoter Activation and Epigenetic Modification. Journal of Biological Chemistry, 2013, 288, 23868-23874.	3.4	56
115	Progressive Multiple Sclerosis Is Associated with Faster and Specific Retinal Layer Atrophy. Annals of Neurology, 2020, 87, 885-896.	5.3	56
116	Potassium channels Kv1.3 and Kv1.5 are expressed on blood-derived dendritic cells in the central nervous system. Annals of Neurology, 2006, 60, 118-127.	5.3	55
117	One Eye or Two: A Comparison of Binocular and Monocular Low-Contrast Acuity Testing in Multiple Sclerosis. American Journal of Ophthalmology, 2011, 152, 133-140.	3.3	55
118	Dimethyl fumarate alters Bâ€cell memory and cytokine production in MS patients. Annals of Clinical and Translational Neurology, 2017, 4, 351-355.	3.7	54
119	Considerations in the treatment of relapsing-remitting multiple sclerosis. Neurology, 2002, 58, S10-22.	1.1	54
120	A lipid storage–like disorder contributes to cognitive decline in HIV-infected subjects. Neurology, 2013, 81, 1492-1499.	1.1	53
121	Retinal damage and vision loss in <scp>A</scp> frican <scp>A</scp> merican multiple sclerosis patients. Annals of Neurology, 2015, 77, 228-236.	5.3	53
122	Outer retinal changes following acute optic neuritis. Multiple Sclerosis Journal, 2016, 22, 362-372.	3.0	53
123	Imaging outcome measures of neuroprotection and repair in MS. Neurology, 2019, 92, 519-533.	1.1	53
124	Low-contrast acuity measures visual improvement in phase 3 trial of natalizumab in relapsing MS. Journal of the Neurological Sciences, 2012, 318, 119-124.	0.6	52
125	Relationships between quantitative spinal cord MRI and retinal layers in multiple sclerosis. Neurology, 2015, 84, 720-728.	1.1	52
126	Multiple-object geometric deformable model for segmentation of macular OCT. Biomedical Optics Express, 2014, 5, 1062.	2.9	51

#	Article	IF	CITATIONS
127	Mesenchymal Stem Cells Differentially Modulate Effector CD8+ T Cell Subsets and Exacerbate Experimental Autoimmune Encephalomyelitis. Stem Cells, 2014, 32, 2744-2755.	3.2	51
128	Structured layer surface segmentation for retina OCT using fully convolutional regression networks. Medical Image Analysis, 2021, 68, 101856.	11.6	51
129	Activated T-Cells Inhibit Neurogenesis by Releasing Granzyme B: Rescue by Kv1.3 Blockers. Journal of Neuroscience, 2010, 30, 5020-5027.	3.6	50
130	1,25-Dihydroxyvitamin D ₃ selectively and reversibly impairs T helper-cell CNS localization. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21101-21106.	7.1	50
131	Retinal measurements predict 10â€year disability in multiple sclerosis. Annals of Clinical and Translational Neurology, 2019, 6, 222-232.	3.7	50
132	Thalamic lesions in multiple sclerosis by 7T MRI: Clinical implications and relationship to cortical pathology. Multiple Sclerosis Journal, 2015, 21, 1139-1150.	3.0	49
133	Metabolomics in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 451-460.	3.0	49
134	Signal Transduction Inhibition of APCs Diminishes Th17 and Th1 Responses in Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2009, 182, 4192-4199.	0.8	48
135	Glial pathology and retinal neurotoxicity in the anterior visual pathway in experimental autoimmune encephalomyelitis. Acta Neuropathologica Communications, 2019, 7, 125.	5.2	47
136	Single-cell transcriptomic reveals molecular diversity and developmental heterogeneity of human stem cell-derived oligodendrocyte lineage cells. Nature Communications, 2021, 12, 652.	12.8	47
137	Optimal Intereye Difference Thresholds in Retinal Nerve Fiber Layer Thickness for Predicting a Unilateral Optic Nerve Lesion in Multiple Sclerosis. Journal of Neuro-Ophthalmology, 2018, 38, 451-458.	0.8	46
138	Cutting Edge: The Transcription Factor Kruppel-Like Factor 4 Regulates the Differentiation of Th17 Cells Independently of RORI ³ t. Journal of Immunology, 2010, 185, 7161-7164.	0.8	45
139	Optical coherence tomography does not support optic nerve involvement in amyotrophic lateral sclerosis. European Journal of Neurology, 2013, 20, 1170-1176.	3.3	45
140	Trial of intrathecal rituximab in progressive multiple sclerosis patients with evidence of leptomeningeal contrast enhancement. Multiple Sclerosis and Related Disorders, 2019, 30, 136-140.	2.0	45
141	Pathogenic aquaporin-4 reactive T cells are sufficient to induce mouse model of neuromyelitis optica. Acta Neuropathologica Communications, 2015, 3, 28.	5.2	44
142	MIMoSA: An Automated Method for Intermodal Segmentation Analysis of Multiple Sclerosis Brain Lesions. Journal of Neuroimaging, 2018, 28, 389-398.	2.0	44
143	Imaging meningeal inflammation in CNS autoimmunity identifies a therapeutic role for BTK inhibition. Brain, 2021, 144, 1396-1408.	7.6	44
144	Fully Convolutional Boundary Regression for Retina OCT Segmentation. Lecture Notes in Computer Science, 2019, 11764, 120-128.	1.3	44

#	Article	IF	CITATIONS
145	Deep learning based topology guaranteed surface and MME segmentation of multiple sclerosis subjects from retinal OCT. Biomedical Optics Express, 2019, 10, 5042.	2.9	44
146	<i>q</i> â€space and conventional diffusion imaging of axon and myelin damage in the rat spinal cord after axotomy. Magnetic Resonance in Medicine, 2010, 63, 1323-1335.	3.0	43
147	Automated vs. conventional tractography in multiple sclerosis: Variability and correlation with disability. NeuroImage, 2010, 49, 3047-3056.	4.2	43
148	Granzyme B-Induced Neurotoxicity Is Mediated via Activation of PAR-1 Receptor and Kv1.3 Channel. PLoS ONE, 2012, 7, e43950.	2.5	43
149	Retinal layer parcellation of optical coherence tomography images: Data resource for multiple sclerosis and healthy controls. Data in Brief, 2019, 22, 601-604.	1.0	43
150	New and emerging disease modifying therapies for multiple sclerosis. Annals of the New York Academy of Sciences, 2012, 1247, 117-137.	3.8	42
151	FTY720 impairs CD8 T-cell function independently of the sphingosine-1-phosphate pathway. Journal of Neuroimmunology, 2014, 270, 13-21.	2.3	42
152	Agar-gelatin for embedding tissues prior to paraffin processing. BioTechniques, 2007, 42, 569-570.	1.8	41
153	Monocular and binocular low-contrast visual acuity and optical coherence tomography in pediatric multiple sclerosis. Multiple Sclerosis and Related Disorders, 2014, 3, 326-334.	2.0	41
154	The Impact of Dynamic Balance Measures on Walking Performance in Multiple Sclerosis. Neurorehabilitation and Neural Repair, 2015, 29, 62-69.	2.9	41
155	Dimethyl fumarate treatment alters NK cell function in multiple sclerosis. European Journal of Immunology, 2018, 48, 380-383.	2.9	41
156	Diversity and Function of Glial Cell Types in Multiple Sclerosis. Trends in Immunology, 2021, 42, 228-247.	6.8	41
157	Effect of peginterferon beta-1a on MRI measures and achieving no evidence of disease activity: results from a randomized controlled trial in relapsing-remitting multiple sclerosis. BMC Neurology, 2014, 14, 240.	1.8	40
158	Retinal degeneration in primary-progressive multiple sclerosis: A role for cortical lesions?. Multiple Sclerosis Journal, 2017, 23, 43-50.	3.0	40
159	Bryostatin-1 alleviates experimental multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2186-2191.	7.1	40
160	Dimethyl fumarate treatment induces lipid metabolism alterations that are linked to immunological changes. Annals of Clinical and Translational Neurology, 2019, 6, 33-45.	3.7	39
161	Complement component 3 from astrocytes mediates retinal ganglion cell loss during neuroinflammation. Acta Neuropathologica, 2021, 142, 899-915.	7.7	39
162	A Comparison of Supervised Machine Learning Algorithms and Feature Vectors for MS Lesion Segmentation Using Multimodal Structural MRI. PLoS ONE, 2014, 9, e95753.	2.5	38

#	Article	IF	CITATIONS
163	Synaptic and complement markers in extracellular vesicles in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 509-518.	3.0	38
164	Quantitative measures of walking and strength provide insight into brain corticospinal tract pathology in multiple sclerosis. NeuroImage: Clinical, 2017, 14, 490-498.	2.7	37
165	Optical coherence tomography in multiple sclerosis: A 3â€year prospective multicenter study. Annals of Clinical and Translational Neurology, 2021, 8, 2235-2251.	3.7	36
166	OCT retinal nerve fiber layer thickness differentiates acute optic neuritis from MOG antibody-associated disease and Multiple Sclerosis. Multiple Sclerosis and Related Disorders, 2022, 58, 103525.	2.0	36
167	Visual Pathway Axonal Loss in Benign Multiple Sclerosis. Journal of Neuro-Ophthalmology, 2012, 32, 116-123.	0.8	35
168	Axial 3D gradient-echo imaging for improved multiple sclerosis lesion detection in the cervical spinal cord at 3T. Neuroradiology, 2013, 55, 431-439.	2.2	35
169	Helper T cells down-regulate CD4 expression upon chronic stimulation giving rise to double-negative T cells. Cellular Immunology, 2013, 284, 68-74.	3.0	35
170	Spinal Cord Normalization in Multiple Sclerosis. Journal of Neuroimaging, 2014, 24, 577-584.	2.0	35
171	Applying an Open-Source Segmentation Algorithm to Different OCT Devices in Multiple Sclerosis Patients and Healthy Controls: Implications for Clinical Trials. Multiple Sclerosis International, 2015, 2015, 1-10.	0.8	35
172	Association of Spectral-Domain OCT With Long-term Disability Worsening in Multiple Sclerosis. Neurology, 2021, 96, e2058-e2069.	1.1	35
173	Hiding in plain sight: a closer look at posterior cortical atrophy. Practical Neurology, 2015, 15, 5-13.	1.1	34
174	Reconstruction of the human cerebral cortex robust to white matter lesions: Method and validation. Human Brain Mapping, 2014, 35, 3385-3401.	3.6	33
175	Artificial intelligence extension of the OSCARâ€ŀB criteria. Annals of Clinical and Translational Neurology, 2021, 8, 1528-1542.	3.7	33
176	Chemokine receptor expression on MBP-reactive T cells: CXCR6 is a marker of IFNÎ ³ -producing effector cells. Journal of Neuroimmunology, 2002, 127, 96-105.	2.3	32
177	Longitudinal relationships among posturography and gait measures in multiple sclerosis. Neurology, 2015, 84, 2048-2056.	1.1	32
178	Quantitative sensory and motor measures detect change over time and correlate with walking speed in individuals with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2015, 4, 67-74.	2.0	32
179	How global MS prevalence is changing: A retrospective chart review in the United Arab Emirates. Multiple Sclerosis and Related Disorders, 2016, 9, 73-79.	2.0	32
180	Immune cell modulation of oligodendrocyte lineage cells. Neuroscience Letters, 2020, 715, 134601.	2.1	32

#	Article	IF	CITATIONS
181	Socioeconomic status and race are correlated with affective symptoms in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2020, 41, 102010.	2.0	32
182	Emerging injectable therapies for multiple sclerosis. Lancet Neurology, The, 2013, 12, 1115-1126.	10.2	31
183	Baseline Retinal Nerve Fiber Layer Thickness and Macular Volume Quantified by OCT in the North American Phase 3 Fingolimod Trial for Relapsing–Remitting Multiple Sclerosis. Journal of Neuro-Ophthalmology, 2013, 33, 322-329.	0.8	31
184	Longitudinal multiple sclerosis lesion segmentation data resource. Data in Brief, 2017, 12, 346-350.	1.0	31
185	Towards Topological Correct Segmentation ofÂMacular OCT from Cascaded FCNs. Lecture Notes in Computer Science, 2017, 10554, 202-209.	1.3	31
186	20/40 or Better Visual Acuity After Optic Neuritis: Not as Good as We Once Thought?. Journal of Neuro-Ophthalmology, 2016, 36, 369-376.	0.8	30
187	Early complement genes are associated with visual system degeneration in multiple sclerosis. Brain, 2019, 142, 2722-2736.	7.6	30
188	Complex geometric models of diffusion and relaxation in healthy and damaged white matter. NMR in Biomedicine, 2010, 23, 152-162.	2.8	29
189	Protective effects of 4-aminopyridine in experimental optic neuritis and multiple sclerosis. Brain, 2020, 143, 1127-1142.	7.6	29
190	Intermittent calorie restriction alters T cell subsets and metabolic markers in people with multiple sclerosis. EBioMedicine, 2022, 82, 104124.	6.1	29
191	Functional Blockade of the Voltage-gated Potassium Channel Kv1.3 Mediates Reversion of T Effector to Central Memory Lymphocytes through SMAD3/p21cip1 Signaling*. Journal of Biological Chemistry, 2012, 287, 1261-1268.	3.4	28
192	Analysis of macular OCT images using deformable registration. Biomedical Optics Express, 2014, 5, 2196.	2.9	28
193	iPSCs from people with MS can differentiate into oligodendrocytes in a homeostatic but not an inflammatory milieu. PLoS ONE, 2020, 15, e0233980.	2.5	28
194	Retinal Architecture and Melanopsin-Mediated Pupillary Response Characteristics. JAMA Neurology, 2017, 74, 574.	9.0	27
195	Gradient nonlinearity effects on upper cervical spinal cord area measurement from 3D T ₁ â€weighted brain MRI acquisitions. Magnetic Resonance in Medicine, 2018, 79, 1595-1601.	3.0	27
196	Multisite reliability and repeatability of an advanced brain MRI protocol. Journal of Magnetic Resonance Imaging, 2019, 50, 878-888.	3.4	27
197	Effect of disease-modifying therapies on subcortical gray matter atrophy in multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 312-321.	3.0	27
198	Impaired toll-like receptor 8 signaling in multiple sclerosis. Journal of Neuroinflammation, 2013, 10, 74.	7.2	26

#	Article	IF	CITATIONS
199	B-Cell Depletion — A Frontier in Monoclonal Antibodies for Multiple Sclerosis. New England Journal of Medicine, 2017, 376, 280-282.	27.0	26
200	Multi-omic evaluation of metabolic alterations in multiple sclerosis identifies shifts in aromatic amino acid metabolism. Cell Reports Medicine, 2021, 2, 100424.	6.5	26
201	Blockade of Kv1.3 Potassium Channels Inhibits Differentiation and Granzyme B Secretion of Human CD8+ T Effector Memory Lymphocytes. PLoS ONE, 2013, 8, e54267.	2.5	25
202	Contributors to Serum <scp>NfL</scp> Levels in People without Neurologic Disease. Annals of Neurology, 2022, 92, 688-698.	5.3	25
203	Dendritic cells are abundant in non-lesional gray matter in multiple sclerosis. Experimental and Molecular Pathology, 2007, 83, 198-206.	2.1	24
204	Optical coherence tomography should be part of the routine monitoring of patients with multiple sclerosis: Yes. Multiple Sclerosis Journal, 2014, 20, 1296-1298.	3.0	24
205	Peginterferon beta-1a improves MRI measures and increases the proportion of patients with no evidence of disease activity in relapsing-remitting multiple sclerosis: 2-year results from the ADVANCE randomized controlled trial. BMC Neurology, 2017, 17, 29.	1.8	24
206	An Automated Statistical Technique for Counting Distinct Multiple Sclerosis Lesions. American Journal of Neuroradiology, 2018, 39, 626-633.	2.4	24
207	Imaging Mechanisms of Disease Progression in Multiple Sclerosis: Beyond Brain Atrophy. Journal of Neuroimaging, 2020, 30, 251-266.	2.0	24
208	Layer boundary evolution method for macular OCT layer segmentation. Biomedical Optics Express, 2019, 10, 1064.	2.9	24
209	Retinal pathology in multiple sclerosis: insight into the mechanisms of neuronal pathology. Brain, 2010, 133, 1575-1577.	7.6	23
210	Multifocal visual evoked potentials are influenced by variable contrast stimulation in MS. Neurology, 2012, 79, 797-801.	1.1	23
211	Retrograde trans-synaptic visual pathway degeneration in multiple sclerosis: A case series. Multiple Sclerosis Journal, 2017, 23, 1035-1039.	3.0	23
212	Inhibition of neutral sphingomyelinase 2 promotes remyelination. Science Advances, 2020, 6, .	10.3	23
213	Temporal profile of serum neurofilament light in multiple sclerosis: Implications for patient monitoring. Multiple Sclerosis Journal, 2021, 27, 1497-1505.	3.0	23
214	Central vein sign: A diagnostic biomarker in multiple sclerosis (CAVS-MS) study protocol for a prospective multicenter trial. NeuroImage: Clinical, 2021, 32, 102834.	2.7	23
215	From the prodromal stage of multiple sclerosis to disease prevention. Nature Reviews Neurology, 2022, 18, 559-572.	10.1	23
216	Daclizumab-induced adverse events in multiple organ systems in multiple sclerosis. Neurology, 2014, 82, 984-988.	1.1	22

#	Article	IF	CITATIONS
217	Novel therapies for memory cells in autoimmune diseases. Clinical and Experimental Immunology, 2015, 180, 353-360.	2.6	22
218	Diffusionâ€ŧime dependence of diffusional kurtosis in the mouse brain. Magnetic Resonance in Medicine, 2020, 84, 1564-1578.	3.0	22
219	A Disentangled Latent Space for Cross-Site MRI Harmonization. Lecture Notes in Computer Science, 2020, , 720-729.	1.3	22
220	Distinguishing among multiple sclerosis fallers, near-fallers and non-fallers. Multiple Sclerosis and Related Disorders, 2018, 19, 99-104.	2.0	21
221	NLRX1 inhibits the early stages of CNS inflammation and prevents the onset of spontaneous autoimmunity. PLoS Biology, 2019, 17, e3000451.	5.6	21
222	Association of body mass index with longitudinal rates of retinal atrophy in multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 843-854.	3.0	21
223	The Role of Optical Coherence Tomography Criteria and Machine Learning in Multiple Sclerosis and Optic Neuritis Diagnosis. Neurology, 2022, 99, .	1.1	21
224	Retinal architecture predicts pupillary reflex metrics in MS. Multiple Sclerosis Journal, 2009, 15, 479-486.	3.0	20
225	Detection of clinical and subclinical retinal abnormalities in neurosarcoidosis with optical coherence tomography. Journal of Neurology, 2012, 259, 1390-1398.	3.6	20
226	The expanding spectrum of aetiologies causing retinal microcystic macular change. Brain, 2013, 136, 3212-3214.	7.6	20
227	Thalamus segmentation using multi-modal feature classification: Validation and pilot study of an age-matched cohort. NeuroImage, 2017, 158, 430-440.	4.2	20
228	Serum ceramide levels are altered in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 1506-1519.	3.0	20
229	Longitudinal Retinal Changes in <scp>MOGAD</scp> . Annals of Neurology, 2022, 92, 476-485.	5.3	20
230	Health Effects of Lesion Localization in Multiple Sclerosis: Spatial Registration and Confounding Adjustment. PLoS ONE, 2014, 9, e107263.	2.5	19
231	Longitudinal assessment of hand function in individuals with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2019, 32, 107-113.	2.0	19
232	Evidence of subclinical quantitative retinal layer abnormalities in AQP4-IgG seropositive NMOSD. Multiple Sclerosis Journal, 2021, 27, 1738-1748.	3.0	19
233	Relation of quantitative visual and neurologic outcomes to fatigue in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2015, 4, 304-310.	2.0	18
234	FLT-3 expression and function on microglia in multiple sclerosis. Experimental and Molecular Pathology, 2010, 89, 109-116.	2.1	17

#	Article	IF	CITATIONS
235	Optical coherence tomography: A quantitative tool to measure neurodegeneration and facilitate testing of novel treatments for tissue protection in multiple sclerosis. Journal of Neuroimmunology, 2017, 304, 93-96.	2.3	17
236	Information-Based Disentangled Representation Learning for Unsupervised MR Harmonization. Lecture Notes in Computer Science, 2021, , 346-359.	1.3	17
237	Optical Coherence Tomography and Optical Coherence Tomography Angiography Findings After Optic Neuritis in Multiple Sclerosis. Frontiers in Neurology, 2020, 11, 618879.	2.4	17
238	CNS-targeted autoimmunity leads to increased influenza mortality in mice. Journal of Experimental Medicine, 2017, 214, 297-307.	8.5	16
239	Macular Ganglion Cell and Inner Plexiform Layer Thickness Is More Strongly Associated With Visual Function in Multiple Sclerosis Than Bruch Membrane Opening–Minimum Rim Width or Peripapillary Retinal Nerve Fiber Layer Thicknesses. Journal of Neuro-Ophthalmology, 2019, 39, 444-450.	0.8	16
240	Clay-shoveler's Fracture During Indoor Rock Climbing. Orthopedics, 2013, 36, e381-3.	1.1	15
241	Visual Pathway Measures are Associated with Neuropsychological Function in Multiple Sclerosis. Current Eye Research, 2018, 43, 941-948.	1.5	15
242	Defining response profiles after alemtuzumab. Neurology, 2018, 90, 309-311.	1.1	15
243	The International Multiple Sclerosis Visual System Consortium: Advancing Visual System Research in Multiple Sclerosis. Journal of Neuro-Ophthalmology, 2018, 38, 494-501.	0.8	15
244	Proteomic Alterations and Novel Markers of Neurotoxic Reactive Astrocytes in Human Induced Pluripotent Stem Cell Models. Frontiers in Molecular Neuroscience, 2022, 15, 870085.	2.9	15
245	Contribution of B cells to cortical damage in multiple sclerosis. Brain, 2022, 145, 3363-3373.	7.6	15
246	Image Artifacts in Optical Coherence Tomography Angiography Among Patients With Multiple Sclerosis. Current Eye Research, 2019, 44, 558-563.	1.5	14
247	Cerebellar Contributions to Motor and Cognitive Control in Multiple Sclerosis✺✺✺. Archives of Physical Medicine and Rehabilitation, 2022, 103, 1592-1599.	0.9	14
248	Objective characterization of the relative afferent pupillary defect in MS. Journal of the Neurological Sciences, 2012, 323, 193-200.	0.6	13
249	Interferon Beta Use and Disability Prevention in Relapsing-Remitting Multiple Sclerosis. JAMA Neurology, 2013, 70, 248.	9.0	13
250	Accelerated axon loss in MOG35-55 experimental autoimmune encephalomyelitis (EAE) in myelin-associated glycoprotein-deficient (MAGKO) mice. Journal of Neuroimmunology, 2013, 262, 53-61.	2.3	13
251	Comparison of Point Estimates and Average Thicknesses of Retinal Layers Measured Using Manual Optical Coherence Tomography Segmentation for Quantification of Retinal Neurodegeneration in Multiple Sclerosis. Current Eye Research, 2013, 38, 224-228.	1.5	13
252	An adaptive grid for graph-based segmentation in retinal OCT. Proceedings of SPIE, 2014, 9034, .	0.8	13

#	Article	IF	CITATIONS
253	Combined registration and motion correction of longitudinal retinal OCT data. Proceedings of SPIE, 2016, 9784, .	0.8	13
254	Multiple Sclerosis. Seminars in Neurology, 2016, 36, 350-356.	1.4	13
255	Pain, cognition and quality of life associate with structural measures of brain volume loss in multiple sclerosis. NeuroRehabilitation, 2016, 39, 535-544.	1.3	13
256	Microvascular blood flow velocities measured with a retinal function imager: inter-eye correlations in healthy controls and an exploration in multiple sclerosis. Eye and Vision (London, England), 2018, 5, 29.	3.0	13
257	Socioeconomic disparity is associated with faster retinal neurodegeneration in multiple sclerosis. Brain, 2021, 144, 3664-3673.	7.6	13
258	Retinal architecture and mfERG. Neurology, 2014, 82, 1888-1896.	1.1	12
259	Single-use autoinjector for peginterferon-β1a treatment of relapsing-remitting multiple sclerosis: safety, tolerability and patient evaluation data from the Phase IIIb ATTAIN study. Expert Opinion on Drug Delivery, 2014, 11, 1713-1720.	5.0	12
260	Therapeutic Application of Monoclonal Antibodies in Multiple Sclerosis. Clinical Pharmacology and Therapeutics, 2017, 101, 52-64.	4.7	12
261	Analysis of Agreement of Retinal-Layer Thickness Measures Derived from the Segmentation of Horizontal and Vertical Spectralis OCT Macular Scans. Current Eye Research, 2018, 43, 415-423.	1.5	12
262	The NAIMS cooperative pilot project: Design, implementation and future directions. Multiple Sclerosis Journal, 2018, 24, 1770-1772.	3.0	12
263	Glutamine antagonism attenuates physical and cognitive deficits in a model of MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, .	6.0	12
264	Spinal cord and infratentorial lesions in radiologically isolated syndrome are associated with decreased retinal ganglion cell/inner plexiform layer thickness. Multiple Sclerosis Journal, 2019, 25, 1878-1887.	3.0	12
265	Kinetics of CCR7 expression differ between primary activation and effector memory states of TH1 and TH2 cells. Journal of Neuroimmunology, 2003, 139, 58-65.	2.3	11
266	Optic nerve head component responses of the multifocal electroretinogram in MS. Neurology, 2013, 81, 545-551.	1.1	11
267	Deformable registration of macular oct using a-mode scan similarity. , 2013, 2013, 476-479.		11
268	Simultaneous segmentation of retinal surfaces and microcystic macular edema in SDOCT volumes. Proceedings of SPIE, 2016, 9784, .	0.8	11
269	Quetiapine has an additive effect to triiodothyronine in inducing differentiation of oligodendrocyte precursor cells through induction of cholesterol biosynthesis. PLoS ONE, 2019, 14, e0221747.	2.5	11
270	Therapeutic Potential of a Novel Glucagon-like Peptide-1 Receptor Agonist, NLY01, in Experimental Autoimmune Encephalomyelitis. Neurotherapeutics, 2021, 18, 1834-1848.	4.4	11

#	Article	IF	CITATIONS
271	Stratus OCT Quality Control in Two Multi-Centre Multiple Sclerosis Clinical Trials. Neuro-Ophthalmology, 2011, 35, 57-64.	1.0	10
272	Antigenic Stimulation of Kv1.3-Deficient Th Cells Gives Rise to a Population of Foxp3-Independent T Cells with Suppressive Properties. Journal of Immunology, 2015, 195, 1399-1407.	0.8	10
273	Monitoring diffuse injury during disease progression in experimental autoimmune encephalomyelitis with on resonance variable delay multiple pulse (onVDMP) CEST MRI. NeuroImage, 2020, 204, 116245.	4.2	10
274	1,25-Dihydroxyvitamin D3 impairs the differentiation of effector memory T cells in vitro in multiple sclerosis patients and healthy controls. Journal of Neuroimmunology, 2015, 279, 20-24.	2.3	9
275	Increased TNFR1 expression and signaling in injured peripheral nerves of mice with reduced BACE1 activity. Neurobiology of Disease, 2016, 93, 21-27.	4.4	9
276	Phenytoin in acute optic neuritis: neuroprotective or not?. Lancet Neurology, The, 2016, 15, 233-235.	10.2	9
277	Central vein sign in multiple sclerosis. Neurology, 2018, 90, 631-632.	1.1	9
278	Modulation of Retinal Atrophy With Rituximab in Multiple Sclerosis. Neurology, 2021, 96, e2525-e2533.	1.1	9
279	Improving the efficacy of exome sequencing at a quaternary care referral centre: novel mutations, clinical presentations and diagnostic challenges in rare neurogenetic diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1186-1196.	1.9	9
280	Can retinal imaging accurately detect optic neuritis?. Nature Reviews Neurology, 2010, 6, 125-126.	10.1	8
281	Longitudinal graph-based segmentation of macular OCT using fundus alignment. Proceedings of SPIE, 2015, 9413, .	0.8	8
282	Voxel based morphometry in optical coherence tomography: validation and core findings. , 2016, 9788, .		8
283	Adapted Resistance Training Improves Strength in Eight Weeks in Individuals with Multiple Sclerosis. Journal of Visualized Experiments, 2016, , e53449.	0.3	8
284	Multi-layer fast level set segmentation for macular OCT. , 2018, 2018, 1445-1448.		8
285	Optical Coherence Tomography in X-Linked Adrenoleukodystrophy. Pediatric Neurology, 2013, 49, 182-184.	2.1	7
286	Segmentation of microcystic macular edema in Cirrus OCT scans with an exploratory longitudinal study. Proceedings of SPIE, 2015, 9417, .	0.8	7
287	Preparation of Rat Oligodendrocyte Progenitor Cultures and Quantification of Oligodendrogenesis Using Dual-infrared Fluorescence Scanning. Journal of Visualized Experiments, 2016, , 53764.	0.3	7
288	Deep Harmonization of Inconsistent MR Data for Consistent Volume Segmentation. Lecture Notes in Computer Science, 2018, , 20-30.	1.3	7

#	Article	IF	CITATIONS
289	Variational intensity cross channel encoder for unsupervised vessel segmentation on OCT angiography. , 2020, , .		7
290	Association of Serum Neurofilament Light Chain With Inner Retinal Layer Thinning in Multiple Sclerosis. Neurology, 2022, 99, .	1.1	7
291	Thalamus parcellation using multi-modal feature classification and thalamic nuclei priors. , 2016, 9784, .		6
292	Five-year longitudinal changes in quantitative spinal cord MRI in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 549-558.	3.0	6
293	ADVANCE Phase 3 Study of PEGylated Interferon Beta-1a for Relapsing Multiple Sclerosis: Patient Baseline Characteristics (P01.133). Neurology, 2012, 78, P01.133-P01.133.	1.1	6
294	Measuring treatment response to advance precision medicine for multiple sclerosis. Annals of Clinical and Translational Neurology, 2021, 8, 2166-2173.	3.7	6
295	Breaking the barriers to remyelination in multiple sclerosis. Current Opinion in Pharmacology, 2022, 63, 102194.	3.5	6
296	Reactive Astrocytes Derived From Human Induced Pluripotent Stem Cells Suppress Oligodendrocyte Precursor Cell Differentiation. Frontiers in Molecular Neuroscience, 2022, 15, .	2.9	6
297	In Vivo Demonstration of Homonymous Hemimacular Loss of Retinal Ganglion Cells Due to a Thalamic Lesion Using Optical Coherence Tomography. JAMA Neurology, 2013, 70, 410.	9.0	5
298	Intensity inhomogeneity correction of macular OCT using N3 and retinal flatspace. , 2016, 2016, 197-200.		5
299	Projection Artifact Suppression For Inner Retina In Oct Angiography. , 2019, , .		5
300	Quantitative vibratory sensation measurement is related to sensory cortical thickness in <scp>MS</scp> . Annals of Clinical and Translational Neurology, 2019, 6, 586-595.	3.7	5
301	TAPAS: A Thresholding Approach for Probability Map Automatic Segmentation in Multiple Sclerosis. NeuroImage: Clinical, 2020, 27, 102256.	2.7	5
302	Retinal pathology occurs in stiff-person syndrome. Neurology, 2020, 94, e2126-e2131.	1.1	5
303	Optic Neuritis–Independent Retinal Atrophy in Neuromyelitis Optica Spectrum Disorder. Journal of Neuro-Ophthalmology, 2022, 42, e40-e47.	0.8	5
304	Dice Overlap Measures for Objects of Unknown Number: Application to Lesion Segmentation. Lecture Notes in Computer Science, 2018, 10670, 3-14.	1.3	5
305	Intensity inhomogeneity correction of SD-OCT data using macular flatspace. Medical Image Analysis, 2018, 43, 85-97.	11.6	4
306	Is Cerebrospinal Fluid Responsible for Innate Immune Cell Activation and Neurotoxicity in Multiple Sclerosis?. Neurology, 2021, 96, 649-650.	1.1	4

#	Article	IF	CITATIONS
307	Mitochondrial measures in neuronally enriched extracellular vesicles predict brain and retinal atrophy in multiple sclerosis. Multiple Sclerosis Journal, 2022, 28, 2020-2026.	3.0	4
308	Inflammation in Multiple Sclerosis — Sorting Out the Gray Matter. New England Journal of Medicine, 2011, 365, 2231-2233.	27.0	3
309	Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation. Lecture Notes in Computer Science, 2018, , 43-54.	1.3	3
310	Investigating glatiramer acetate for relapsing–remitting multiple sclerosis at the double dose—is more better?. Nature Clinical Practice Neurology, 2007, 3, 540-541.	2.5	2
311	Voxel-wise displacement as independent features in classification of multiple sclerosis. , 2013, 8669, .		2
312	Microcystic macular edema detection in retina OCT images. , 2014, , .		2
313	Basic principles of optical coherence tomography. , 2015, , 4-13.		2
314	Characteristics of morphologic macular abnormalities in neuroimmunology practice. Multiple Sclerosis Journal, 2019, 25, 361-371.	3.0	2
315	Combining Magnetization Transfer Ratio MRI and Quantitative Measures of Walking Improves the Identification of Fallers in MS. Brain Sciences, 2020, 10, 822.	2.3	2
316	Reply to "Retinal <scp>INL</scp> Thickness in Multiple Sclerosis: A Mere Marker of Neurodegeneration?― Annals of Neurology, 2021, 89, 193-194.	5.3	2
317	Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation. , 2018, 10670, 43-54.		2
318	Type of serum collection tube does not impact neurofilament light chain levels. Multiple Sclerosis and Related Disorders, 2022, 59, 103676.	2.0	2
319	Multisite MRI reproducibility of lateral ventricular volume using the NAIMS cooperative pilot dataset. Journal of Neuroimaging, 2022, 32, 910-919.	2.0	2
320	Retinal pathology in spontaneous opticospinal experimental autoimmune encephalitis mice. Journal of Neuroimmunology, 2022, 367, 577859.	2.3	2
321	Anti-interleukin-2 receptor alpha for multiple sclerosis?. Lancet, The, 2013, 381, 2141-2143.	13.7	1
322	Intensity standardization of longitudinal images using 4D clustering. , 2013, , .		1
323	Optical coherence tomography pathologies to know about in clinical practice. , 0, , 145-155.		1

Optical coherence tomography and low-contrast acuity. , 0, , 61-75.

#	Article	IF	CITATIONS
325	Meta-analysis of optical coherence tomography in multiple sclerosis. , 0, , 103-113.		1
326	Optical coherence tomography and retinal segmentation in neurological diseases. , 0, , 156-164.		1
327	Is my MS patient failing treatment?. Neurology, 2016, 87, 124-125.	1.1	1
328	Ultra-high-field (7.0 Tesla and above) MRI is now necessary to make the next step forward in understanding MS pathophysiology – Commentary. Multiple Sclerosis Journal, 2017, 23, 376-377.	3.0	1
329	The emergence of neuroepidemiology, neurovirology and neuroimmunology: the legacies of John F. Kurtzke and Richard â€~Dick' T. Johnson. Journal of Neurology, 2017, 264, 817-828.	3.6	1
330	Advances in multiple sclerosis: from reduced relapses to remedies. Lancet Neurology, The, 2018, 17, 10-12.	10.2	1
331	Trials and tribulations on the path to remyelination. Lancet Neurology, The, 2021, 20, 686-687.	10.2	1
332	Diffusion Tensor and Magnetization Transfer Imaging Correlates of Motor Dysfunction in the Spinal Cord in Multiple Sclerosis (S21.002). Neurology, 2012, 78, S21.002-S21.002.	1.1	1
333	Complex antibody profiling to predict clinical outcome in childhood ADS. Neurology, 2014, 83, 2200-2201.	1.1	0
334	Reply: Photoreceptor layer thinning is not specific for Parkinson's disease. Movement Disorders, 2014, 29, 1332-1332.	3.9	0
335	Optical coherence tomography and visual outcomes in acute optic neuritis. , 0, , 42-60.		0
336	Introduction to optical coherence tomography in neurological diseases. , 0, , 1-3.		0
337	Anatomy of the anterior visual pathway. , 0, , 14-27.		0
338	Optical coherence tomography in acute optic neuritis. , 0, , 28-41.		0
339	Optical coherence tomography and electrophysiology of the visual pathway. , 0, , 76-88.		0
340	Optical coherence tomography and electrophysiology of the optic nerve head. , 0, , 89-102.		0
341	Optical coherence tomography and brain magnetic resonance imaging in multiple sclerosis. , 0, , 114-127.		0
342	Optical coherence tomography in neurodegenerative and other neurologic diseases. , 0, , 128-144.		0

#	Article	IF	CITATIONS
343	Optical coherence tomography and retinal pathology in neurologic diseases. , 0, , 165-175.		0
344	Retinal inflammation in multiple sclerosis revealed by optical coherence tomography and ophthalmoscopy. , 0, , 176-183.		0
345	Optical coherence tomography and optic nerve magnetic resonance imaging in demyelinating diseases. , 0, , 184-190.		0
346	Optical coherence tomography in neurologic clinical trials. , 0, , 191-197.		0
347	Optical coherence tomography in a multi-center setting: quality control issues. , 0, , 198-208.		0
348	Future technological advances in optical coherence tomography. , 0, , 209-217.		0
349	Multiple-object geometric deformable model for segmentation of macular OCT: errata. Biomedical Optics Express, 2015, 6, 1351.	2.9	0
350	Safety and immunologic effects of high- vs low-dose cholecalciferol in multiple sclerosis. Neurology, 2016, 87, 1424-1424.	1.1	0
351	Safety and immunologic effects of high- vs low-dose cholecalciferol in multiple sclerosis. Neurology, 2016, 87, 446-446.	1.1	0
352	Safety and immunologic effects of high- vs low-dose cholecalciferol in multiple sclerosis. Neurology, 2016, 87, 445-446.	1.1	0
353	OCT in Relapsing–Remitting Multiple Sclerosis (RRMS). , 2016, , 113-133.		0
354	Response to— <i>Tracking the role of sphingolipids in MS: The dynamic nature of ceramide synthases</i> . Multiple Sclerosis Journal, 2022, , 135245852210840.	3.0	0
355	Reply to "Interpretation of Longitudinal Changes of the Inner Nuclear Layer in <scp>MS</scp> ― Annals of Neurology, 2022, 92, 156-157.	5.3	0
356	018†Disease control beyond NEDA: the value of non-clinical measures to determine treatment response to natalizumab. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A19.1-A19.	1.9	0