
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6116429/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Layer-by-layer zinc metal anodes to achieve long-life zinc-ion batteries. Chemical Engineering Journal, 2022, 431, 133902.	6.6	32
2	Unraveling dynamical behaviors of zinc metal electrodes in aqueous electrolytes through an operando study. Energy Storage Materials, 2022, 46, 243-251.	9.5	31
3	Reversible aqueous zinc-ion battery based on ferric vanadate cathode. Chinese Chemical Letters, 2022, 33, 4628-4634.	4.8	25
4	MoS2 with high 1T phase content enables fast reversible zinc-ion storage via pseudocapacitance. Chemical Engineering Journal, 2022, 448, 137688.	6.6	24
5	β-MnO2 with proton conversion mechanism in rechargeable zinc ion battery. Journal of Energy Chemistry, 2021, 56, 365-373.	7.1	114
6	Towards High-Energy and Anti-Self-Discharge Zn-Ion Hybrid Supercapacitors with New Understanding of the Electrochemistry. Nano-Micro Letters, 2021, 13, 95.	14.4	115
7	High-performance zinc-ion batteries enabled by electrochemically induced transformation of vanadium oxide cathodes. Journal of Energy Chemistry, 2021, 60, 233-240.	7.1	65
8	3D Oxygenâ€Defective Potassium Vanadate/Carbon Nanoribbon Networks as Highâ€Performance Cathodes for Aqueous Zincâ€Ion Batteries. Small Methods, 2020, 4, 1900670.	4.6	124
9	Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors. Chemical Engineering Journal, 2020, 384, 123355.	6.6	188
10	High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials. Nano-Micro Letters, 2020, 12, 152.	14.4	141
11	Few-layer Ti3C2T MXene delaminated via flash freezing for high-rate electrochemical capacitive energy storage. Journal of Energy Chemistry, 2020, 48, 233-240.	7.1	27
12	Layered vanadium oxides with proton and zinc ion insertion for zinc ion batteries. Electrochimica Acta, 2019, 320, 134565.	2.6	143
13	High-Power and Ultralong-Life Aqueous Zinc-Ion Hybrid Capacitors Based on Pseudocapacitive Charge Storage. Nano-Micro Letters, 2019, 11, 94.	14.4	108
14	Novel Insights into Energy Storage Mechanism of Aqueous Rechargeable Zn/MnO2 Batteries with Participation of Mn2+. Nano-Micro Letters, 2019, 11, 49.	14.4	166
15	Thermal design and optimization of lithium ion batteries for unmanned aerial vehicles. Energy Storage, 2019, 1, e48.	2.3	10
16	Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen. Nano Research, 2019, 12, 925-930.	5.8	39
17	Aqueous V2O5/activated carbon zinc-ion hybrid capacitors with high energy density and excellent cycling stability. Journal of Materials Science: Materials in Electronics, 2019, 30, 5478-5486.	1.1	41
18	3D Porous Copper Skeleton Supported Zinc Anode toward High Capacity and Long Cycle Life Zinc Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 3364-3371.	3.2	387

#	Article	IF	CITATIONS
19	Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Materials, 2019, 20, 335-342.	9.5	221
20	Facile Preparation of Highâ€Performance Stretchable Fiber‣ike Electrodes and Supercapacitors. ChemistrySelect, 2018, 3, 4179-4184.	0.7	16
21	Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Materials, 2018, 13, 96-102.	9.5	568
22	Universal Descriptor for Large-Scale Screening of High-Performance MXene-Based Materials for Energy Storage and Conversion. Chemistry of Materials, 2018, 30, 2687-2693.	3.2	71
23	Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO ₂ Composite Textiles. ACS Applied Materials & Interfaces, 2018, 10, 10851-10859.	4.0	65
24	Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochimica Acta, 2018, 259, 170-178.	2.6	269
25	Effects of solvent on structures and properties of electrospun poly(ethylene oxide) nanofibers. Journal of Applied Polymer Science, 2018, 135, 45787.	1.3	40
26	Binary and Ternary Manganese Dioxide Composites Cathode for Aqueous Zincâ€ion Battery. ChemistrySelect, 2018, 3, 12661-12665.	0.7	15
27	Origin of storage capacity enhancement by replacing univalent ion with multivalent ion for energy storage. Electrochimica Acta, 2018, 282, 30-37.	2.6	11
28	Comprehensive approaches to three-dimensional flexible supercapacitor electrodes based on MnO2/carbon nanotube/activated carbon fiber felt. Journal of Materials Science, 2017, 52, 5788-5798.	1.7	24
29	Manganese Sesquioxide as Cathode Material for Multivalent Zinc Ion Battery with High Capacity and Long Cycle Life. Electrochimica Acta, 2017, 229, 422-428.	2.6	329
30	Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy, 2017, 34, 242-248.	8.2	122
31	Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion battery systems. Chemical Communications, 2017, 53, 6872-6874.	2.2	147
32	Theoretical Investigation of the Intercalation Chemistry of Lithium/Sodium Ions in Transition Metal Dichalcogenides. Journal of Physical Chemistry C, 2017, 121, 13599-13605.	1.5	87
33	Stacking up layers of polyaniline/carbon nanotube networks inside papers as highly flexible electrodes with large areal capacitance and superior rate capability. Journal of Materials Chemistry A, 2017, 5, 19934-19942.	5.2	82
34	Unraveling the Influence of Metal Substrates on Graphene Nucleation from First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 23239-23245.	1.5	20
35	Breathable and Wearable Energy Storage Based on Highly Flexible Paper Electrodes. Advanced Materials, 2016, 28, 9313-9319.	11.1	219
36	Simultaneous Production of Highâ€Performance Flexible Textile Electrodes and Fiber Electrodes for Wearable Energy Storage. Advanced Materials, 2016, 28, 1675-1681.	11.1	186

#	Article	IF	CITATIONS
37	High-performance supercapacitors based on graphene/MnO ₂ /activated carbon fiber felt composite electrodes in different neutral electrolytes. RSC Advances, 2016, 6, 12525-12529.	1.7	22
38	Flexible electrodes and supercapacitors for wearable energy storage: a review by category. Journal of Materials Chemistry A, 2016, 4, 4659-4685.	5.2	493
39	Secondary batteries with multivalent ions for energy storage. Scientific Reports, 2015, 5, 14120.	1.6	125
40	Prediction of interfacial thermal resistance of carbon fiber in one dimensional fiber-reinforced composites using laser flash analysis. Composites Science and Technology, 2015, 110, 69-75.	3.8	13
41	Tailoring Native Defects and Zinc Impurities in Li ₄ Ti ₅ O ₁₂ : Insights from First-Principles Study. Journal of Physical Chemistry C, 2015, 119, 5238-5245.	1.5	23
42	High-performance compressible supercapacitors based on functionally synergic multiscale carbon composite textiles. Journal of Materials Chemistry A, 2015, 3, 4729-4737.	5.2	81
43	Enhancement on Cycle Performance of Zn Anodes by Activated Carbon Modification for Neutral Rechargeable Zinc Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A1439-A1444.	1.3	164
44	First principles study of ruthenium(<scp>ii</scp>) sensitizer adsorption on anatase TiO ₂ (001) surface. RSC Advances, 2015, 5, 60230-60236.	1.7	7
45	Facile preparation of carbon nanotube aerogels with controlled hierarchical microstructures and versatile performance. Carbon, 2015, 90, 164-171.	5.4	51
46	Co-electro-deposition of the MnO2–PEDOT:PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices. Journal of Materials Chemistry A, 2013, 1, 12432.	5.2	163
47	Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property. Scientific Reports, 2013, 3, 2598.	1.6	139
48	Anomalous effect of K ion on crystallinity and capacitance of the manganese dioxide. Journal of Power Sources, 2013, 225, 226-230.	4.0	15
49	Anomalous effect of K ions on electrochemical capacitance of amorphous MnO2. Journal of Power Sources, 2013, 234, 1-7.	4.0	36
50	Experiments and modeling of thermal conductivity of flake graphite/polymer composites affected by adding carbon-based nano-fillers. Carbon, 2013, 57, 452-459.	5.4	56
51	Flexible supercapacitors. Particuology, 2013, 11, 371-377.	2.0	92
52	Investigation on Zinc Ion Storage in Alpha Manganese Dioxide for Zinc Ion Battery by Electrochemical Impedance Spectrum. Journal of the Electrochemical Society, 2013, 160, A93-A97.	1.3	74
53	Ultrathin amorphous manganese dioxide nanosheets synthesized with controllable width. Chemical Communications, 2013, 49, 7331.	2.2	31
54	Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite. Carbon, 2012, 50, 5052-5061.	5.4	65

#	Article	IF	CITATIONS
55	Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage. Journal of Physics and Chemistry of Solids, 2012, 73, 1487-1491.	1.9	153
56	Inorganic-based sol–gel synthesis of nano-structured LiFePO4/C composite materials for lithium ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 1353-1362.	1.2	29
57	Formation and conversion mechanisms between single-crystal gamma-MnOOH and manganese oxides. Materials Research Bulletin, 2012, 47, 1740-1746.	2.7	28
58	Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angewandte Chemie - International Edition, 2012, 51, 933-935.	7.2	1,437
59	The improvement of the high-rate charge/discharge performances of LiFePO4 cathode material by Sn doping. Journal of Solid State Electrochemistry, 2012, 16, 1-8.	1.2	27
60	The Effect of Vanadium on Physicochemical and Electrochemical Performances of LiFePO[sub 4] Cathode for Lithium Battery. Journal of the Electrochemical Society, 2011, 158, A26.	1.3	64
61	Effects of tin doping on physicochemical and electrochemical performances of LiFe1â^xSnxPO4/C (0â‰ ¤ â‰ 9 .07) composite cathode materials. Electrochimica Acta, 2011, 56, 7385-7391.	2.6	38
62	Charge storage mechanism of manganese dioxide for capacitor application: Effect of the mild electrolytes containing alkaline and alkaline-earth metal cations. Journal of Power Sources, 2011, 196, 7854-7859.	4.0	88
63	A study on charge storage mechanism of α-MnO2 by occupying tunnels with metal cations (Ba2+, K+). Journal of Power Sources, 2011, 196, 7860-7867.	4.0	49
64	Recent progress on manganese dioxide based supercapacitors. Journal of Materials Research, 2010, 25, 1421-1432.	1.2	236
65	Reversible Insertion Properties of Zinc Ion into Manganese Dioxide and Its Application for Energy Storage. Electrochemical and Solid-State Letters, 2009, 12, A61.	2.2	99
66	Capacitive Behavior and Charge Storage Mechanism of Manganese Dioxide in Aqueous Solution Containing Bivalent Cations. Journal of the Electrochemical Society, 2009, 156, A73.	1.3	86
67	Asymmetric Activated Carbon-Manganese Dioxide Capacitors in Mild Aqueous Electrolytes Containing Alkaline-Earth Cations. Journal of the Electrochemical Society, 2009, 156, A435.	1.3	109
68	Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method. Journal of Power Sources, 2008, 180, 664-670.	4.0	128
69	Supercapacitive studies on amorphous MnO2 in mild solutions. Journal of Power Sources, 2008, 184, 691-694.	4.0	81