
Buddhi P Lamsal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6115793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein-Rich Pulse Ingredients: Preparation, Modification Technologies and Impact on Important Techno-Functional and Quality Characteristics, and Major Food Applications. Food Reviews International, 2023, 39, 3314-3343.	4.3	3
2	Impact of high-power sonication on yield, molecular structure, and functional properties of soy protein isolate. Innovative Food Science and Emerging Technologies, 2022, 79, 103034.	2.7	6
3	Frontâ€end corn germ separation: Process variations and effects on downstream products recovery and quality. Cereal Chemistry, 2021, 98, 189-211.	1.1	4
4	Ultrasoundâ€assisted extraction and modification of plantâ€based proteins: Impact on physicochemical, functional, and nutritional properties. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1457-1480.	5.9	141
5	Highâ€power sonicationâ€assisted extraction of soy protein from defatted soy meals: Influence of important process parameters. Journal of Food Process Engineering, 2021, 44, e13720.	1.5	14
6	Fermentation performance and nutritional assessment of physically processed lentil and green pea flour. Journal of the Science of Food and Agriculture, 2021, 101, 5792-5806.	1.7	22
7	Sheetâ€extruded films from blends of hydroxypropylated and native corn starches, and their characterization. Journal of Food Process Engineering, 2020, 43, e13216.	1.5	5
8	Effect of high-power sonication pretreatment on extraction and some physicochemical properties of proteins from chickpea, kidney bean, and soybean. International Journal of Biological Macromolecules, 2020, 145, 712-721.	3.6	71
9	Enzymatic hydrolysis of Carioca bean (Phaseolus vulgaris L.) protein as an alternative to commercially rejected grains. LWT - Food Science and Technology, 2020, 125, 109191.	2.5	16
10	High-power sonication of soy proteins: Hydroxyl radicals and their effects on protein structure. Ultrasonics Sonochemistry, 2020, 64, 105019.	3.8	51
11	Changes and degradation kinetics of some bioactive compounds in dried <i>Orthosiphon aristatus</i> (Java tea) leaves during elevated temperature storage. Journal of the Science of Food and Agriculture, 2019, 99, 933-940.	1.7	4
12	Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse. International Journal of Biological Macromolecules, 2019, 139, 1151-1161.	3.6	84
13	Applications of Insectâ€Derived Protein Ingredients in Food and Feed Industry. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 105-123.	0.8	37
14	Stability of Emulsions and Nanoemulsions Stabilized with Biosurfactants, and their Antimicrobial Performance against Escherichia coli O157:H7 and Listeria monocytogenes. Tenside, Surfactants, Detergents, 2019, 56, 436-446.	0.5	3
15	Production of Non-Toxic Biosurfactant – Surfactin – Through Microbial Fermentation of Biomass Hydrolysates for Industrial and Environmental Applications. Tenside, Surfactants, Detergents, 2019, 56, 357-366.	0.5	0
16	Extrusion modifies some physicochemical properties of milk protein concentrate for improved performance in highâ€protein nutrition bars. Journal of the Science of Food and Agriculture, 2018, 98, 391-399.	1.7	14
17	Effects of Addition of Hydrolyzing Enzymes during Fermentation on Characteristics of Distillers' Dried Grains with Solubles. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1453-1463.	0.8	5
18	Performance of Bacillus subtilis on fibrous biomass sugar hydrolysates in producing biosurfactants and techno-economic comparison. Bioprocess and Biosystems Engineering, 2018, 41, 1817-1826.	1.7	4

Buddhi P Lamsal

#	Article	IF	CITATIONS
19	Drying of <i>Orthosiphon aristatus</i> leaves: Mathematical modeling, drying characteristics, and quality aspects. Chemical Engineering Communications, 2018, 205, 1239-1251.	1.5	10
20	Synthesis of some glucose-fatty acid esters by lipase from Candida antarctica and their emulsion functions. Food Chemistry, 2017, 214, 556-563.	4.2	53
21	Effect of TiO 2 nanoparticles on thermo-mechanical properties of cast zein protein films. Food Packaging and Shelf Life, 2017, 13, 35-43.	3.3	22
22	Hydroxypropylation improves film properties of high amylose corn starch. Industrial Crops and Products, 2017, 95, 175-183.	2.5	44
23	Effect of puffing conditions on physical properties and rehydration characteristic of instant rice product. International Journal of Food Science and Technology, 2016, 51, 672-680.	1.3	18
24	Pretreatment of fibrous biomass and growth of biosurfactant-producing Bacillus subtilis on biomass-derived fermentable sugars. Bioprocess and Biosystems Engineering, 2016, 39, 105-113.	1.7	11
25	Production of fatty-acyl-glutamate biosurfactant by Bacillus subtilis on soybean co-products. Biochemical Engineering Journal, 2015, 95, 48-55.	1.8	19
26	Food Laws and Regulations. , 2014, , 275-291.		1
27	Improved Corn Ethanol Fermentation and Oil Distribution by Using Polysaccharide Hydrolyzing Enzymes. Journal of Bioprocess Engineering and Biorefinery, 2014, 3, 323-331.	0.2	5
28	Preparation and characterization of whey protein isolate films reinforced with porous silica coated titania nanoparticles. Journal of Food Engineering, 2013, 117, 133-140.	2.7	62
29	Production, health aspects and potential food uses of dairy prebiotic galactooligosaccharides. Journal of the Science of Food and Agriculture, 2012, 92, 2020-2028.	1.7	118
30	Two fraction extraction of α-zein from DDGS and its characterization. Industrial Crops and Products, 2012, 37, 466-472.	2.5	39
31	Development of New Method for Extraction of αâ€Zein from Corn Gluten Meal Using Different Solvents. Cereal Chemistry, 2011, 88, 356-362.	1.1	23
32	Comparison of Feedstock Pretreatment Performance and Its Effect on Soluble Sugar Availability. Bioenergy Research, 2011, 4, 193-200.	2.2	18
33	REVIEW: Zein Extraction from Corn, Corn Products, and Coproducts and Modifications for Various Applications: A Review. Cereal Chemistry, 2011, 88, 159-173.	1.1	208
34	Enhancing protein and sugar release from defatted soy flakes using ultrasound technology. Journal of Food Engineering, 2010, 96, 270-278.	2.7	155
35	The effect of food viscosity on markers of appetite. FASEB Journal, 2010, 24, 330.7.	0.2	Ο
36	Functional Properties of Soy Protein Isolates Produced from Ultrasonicated Defatted Soy Flakes. JAOCS, Journal of the American Oil Chemists' Society, 2009, 86, 1021-1028.	0.8	99

#	Article	IF	CITATIONS
37	Antimicrobial Mechanism of "Fatty Acyl Glutamic Acid―Biosurfactant against Escherichia coli O157:H7 and Listeria monocytogenes Involves Disruption of the Cytoplasmic Membrane. ACS Food Science & Technology, 0, , .	1.3	1