

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6115120/publications.pdf Version: 2024-02-01

ΖΑΝΙ ΥΛ/Π

#	Article	IF	CITATIONS
1	Effects of hybrid nanofluid mixture in plate heat exchangers. Experimental Thermal and Fluid Science, 2016, 72, 190-196.	2.7	222
2	A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress. Applied Energy, 2016, 162, 494-505.	10.1	213
3	A general correlation for evaporative heat transfer in micro/mini-channels. International Journal of Heat and Mass Transfer, 2010, 53, 1778-1787.	4.8	191
4	A general correlation for adiabatic two-phase pressure drop in micro/mini-channels. International Journal of Heat and Mass Transfer, 2010, 53, 2732-2739.	4.8	167
5	Pressure drop and convective heat transfer of water and nanofluids in a double-pipe helical heat exchanger. Applied Thermal Engineering, 2013, 60, 266-274.	6.0	145
6	Pressure drop and convective heat transfer of Al2O3/water and MWCNT/water nanofluids in a chevron plate heat exchanger. International Journal of Heat and Mass Transfer, 2015, 89, 620-626.	4.8	127
7	Application of ultrasound technology in the drying of food products. Ultrasonics Sonochemistry, 2020, 63, 104950.	8.2	110
8	On further enhancement of single-phase and flow boiling heat transfer in micro/minichannels. Renewable and Sustainable Energy Reviews, 2014, 40, 11-27.	16.4	109
9	Mass transfer between phases in microchannels: A review. Chemical Engineering and Processing: Process Intensification, 2018, 127, 213-237.	3.6	105
10	A general criterion for evaporative heat transfer in micro/mini-channels. International Journal of Heat and Mass Transfer, 2010, 53, 1967-1976.	4.8	102
11	Convective vaporization in micro-fin tubes of different geometries. Experimental Thermal and Fluid Science, 2013, 44, 398-408.	2.7	89
12	Condensation and evaporation heat transfer characteristics in horizontal smooth, herringbone and enhanced surface EHT tubes. International Journal of Heat and Mass Transfer, 2015, 85, 281-291.	4.8	88
13	Dimensionless analysis on liquid-liquid flow patterns and scaling law on slug hydrodynamics in cross-junction microchannels. Chemical Engineering Journal, 2018, 344, 604-615.	12.7	73
14	Pool boiling heat transfer of FC-72 on pin-fin silicon surfaces with nanoparticle deposition. International Journal of Heat and Mass Transfer, 2018, 126, 1019-1033.	4.8	68
15	Experimental comparative evaluation of a graphene nanofluid coolant in miniature plate heat exchanger. International Journal of Thermal Sciences, 2018, 130, 148-156.	4.9	65
16	Hydrodynamics and mass transfer in liquid-liquid non-circular microchannels: Comparison of two aspect ratios and three junction structures. Chemical Engineering Journal, 2017, 322, 328-338.	12.7	56
17	Experimental investigation of condensation in micro-fin tubes of different geometries. Experimental Thermal and Fluid Science, 2012, 37, 19-28.	2.7	55
18	A review on molten-salt-based and ionic-liquid-based nanofluids for medium-to-high temperature heat transfer. Journal of Thermal Analysis and Calorimetry, 2019, 136, 1037-1051.	3.6	54

#	Article	IF	CITATIONS
19	Correlations for saturated critical heat flux in microchannels. International Journal of Heat and Mass Transfer, 2011, 54, 379-389.	4.8	52
20	Saturated pool boiling heat transfer of acetone and HFE-7200 on modified surfaces by electrophoretic and electrochemical deposition. Applied Energy, 2019, 249, 286-299.	10.1	52
21	Liquid-liquid flow patterns and slug hydrodynamics in square microchannels of cross-shaped junctions. Chemical Engineering Science, 2017, 174, 56-66.	3.8	51
22	A comprehensive review on liquid–liquid two-phase flow in microchannel: flow pattern and mass transfer. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	49
23	Flow patterns and slug scaling of liquid-liquid flow in square microchannels. International Journal of Multiphase Flow, 2019, 112, 27-39.	3.4	48
24	Generalized adiabatic pressure drop correlations in evaporative micro/mini-channels. Experimental Thermal and Fluid Science, 2011, 35, 866-872.	2.7	45
25	Pool boiling of HFE-7200 on nanoparticle-coating surfaces: Experiments and heat transfer analysis. International Journal of Heat and Mass Transfer, 2019, 133, 548-560.	4.8	45
26	Heat Transfer Correlations for Elongated Bubbly Flow in Flow Boiling Micro/Minichannels. Heat Transfer Engineering, 2016, 37, 985-993.	1.9	41
27	Convective Condensation Inside Horizontal Smooth and Microfin Tubes. Journal of Heat Transfer, 2014, 136, .	2.1	40
28	Aqueous carbon nanotube nanofluids and their thermal performance in a helical heat exchanger. Applied Thermal Engineering, 2016, 96, 364-371.	6.0	39
29	Heat transfer prediction and critical heat flux mechanism for pool boiling of NOVEC-649 on microporous copper surfaces. International Journal of Heat and Mass Transfer, 2019, 141, 818-834.	4.8	38
30	On Icing and Icing Mitigation of Wind Turbine Blades in Cold Climate. Journal of Energy Resources Technology, Transactions of the ASME, 2015, 137, .	2.3	36
31	Heat transfer to aviation kerosene flowing upward in smooth tubes at supercritical pressures. International Journal of Heat and Mass Transfer, 2015, 85, 1084-1094.	4.8	36
32	A Parametric Study of Hydrodynamic Cavitation Inside Globe Valves. Journal of Fluids Engineering, Transactions of the ASME, 2018, 140, .	1.5	35
33	Pool boiling heat transfer of N-pentane on micro/nanostructured surfaces. International Journal of Thermal Sciences, 2018, 130, 386-394.	4.9	35
34	The effect of the size of square microchannels on hydrodynamics and mass transfer during liquidâ€liquid slug flow. AICHE Journal, 2017, 63, 5019-5028.	3.6	34
35	A new predictive tool for saturated critical heat flux in micro/mini-channels: Effect of the heated length-to-diameter ratio. International Journal of Heat and Mass Transfer, 2011, 54, 2880-2889.	4.8	33
36	Correlations for prediction of the bubble departure radius on smooth flat surface during nucleate pool boiling. International Journal of Heat and Mass Transfer, 2019, 132, 699-714.	4.8	31

#	Article	IF	CITATIONS
37	Magnetic Field Effect on Thermal, Dielectric, and Viscous Properties of a Transformer Oil-Based Magnetic Nanofluid. Energies, 2019, 12, 4532.	3.1	30
38	Modified graphite filled natural rubber composites with good thermal conductivity. Chinese Journal of Chemical Engineering, 2015, 23, 853-859.	3.5	28
39	Heat Transfer Correlations for Single-Phase Flow, Condensation, and Boiling in Microfin Tubes. Heat Transfer Engineering, 2015, 36, 582-595.	1.9	28
40	Entropy generation analysis of fully-developed turbulent heat transfer flow in inward helically corrugated tubes. Numerical Heat Transfer; Part A: Applications, 2018, 73, 788-805.	2.1	27
41	Liquid-liquid two-phase flow patterns in ultra-shallow straight and serpentine microchannels. Heat and Mass Transfer, 2019, 55, 1095-1108.	2.1	25
42	Local heat transfer in subcooled flow boiling in a vertical mini-gap channel. International Journal of Heat and Mass Transfer, 2017, 110, 796-804.	4.8	23
43	Heat transfer correlations for jet impingement boiling over micro-pin-finned surface. International Journal of Heat and Mass Transfer, 2018, 126, 401-413.	4.8	22
44	Electrophoretic deposition surfaces to enhance HFE-7200 pool boiling heat transfer and critical heat flux. International Journal of Thermal Sciences, 2019, 146, 106107.	4.9	20
45	Slug Formation Analysis of Liquid–Liquid Two-Phase Flow in T-Junction Microchannels. Journal of Thermal Science and Engineering Applications, 2019, 11, .	1.5	20
46	Nanoparticle-Assisted Pool Boiling Heat Transfer on Micro-Pin-Fin Surfaces. Langmuir, 2021, 37, 1089-1101.	3.5	20
47	Comparison of heat transfer characteristics of aviation kerosene flowing in smooth and enhanced mini tubes at supercritical pressures. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 1289-1308.	2.8	19
48	Studies of gas-liquid two-phase flows in horizontal mini tubes using 3D reconstruction and numerical methods. International Journal of Multiphase Flow, 2020, 133, 103456.	3.4	19
49	Theoretical study of solvent effects on the decomposition of formic acid over a Co(111) surface. International Journal of Hydrogen Energy, 2017, 42, 24726-24736.	7.1	16
50	Enhancement of loop heat pipe performance with the application of micro/nano hybrid structures. International Journal of Heat and Mass Transfer, 2018, 127, 1248-1263.	4.8	14
51	Modeling natural convection heat transfer from perforated plates. Journal of Zhejiang University: Science A, 2012, 13, 353-360.	2.4	13
52	Breakup dynamics of low-density gas and liquid interface during Taylor bubble formation in a microchannel flow-focusing device. Chemical Engineering Science, 2020, 215, 115473.	3.8	13
53	Evaporative Annular Flow in Micro/Minichannels: A Simple Heat Transfer Model. Journal of Thermal Science and Engineering Applications, 2013, 5, .	1.5	12
54	A geometric study on shell side heat transfer and flow resistance of a six-start spirally corrugated tube. Numerical Heat Transfer; Part A: Applications, 2018, 73, 565-582.	2.1	11

#	Article	IF	CITATIONS
55	Convective heat transfer performance of aggregate-laden nanofluids. International Journal of Heat and Mass Transfer, 2016, 93, 1107-1115.	4.8	10
56	Thermophysical properties and convection heat transfer behavior of ionic liquid [C4mim][NTf2] at medium temperature in helically corrugated tubes. Applied Thermal Engineering, 2018, 142, 457-465.	6.0	10
57	Effects of a Dynamic Injection Flow Rate on Slug Generation in a Cross-Junction Square Microchannel. Processes, 2019, 7, 765.	2.8	10
58	Pool Boiling of NOVEC-649 on Microparticle-Coated and Nanoparticle-Coated Surfaces. Heat Transfer Engineering, 2021, 42, 1732-1747.	1.9	10
59	Toward computationally effective modeling and simulation of droplet formation in microchannel junctions. Chemical Engineering Research and Design, 2021, 166, 135-147.	5.6	10
60	Frictional Pressure Drop Correlations for Single-Phase Flow, Condensation, and Evaporation in Microfin Tubes. Journal of Heat Transfer, 2016, 138, .	2.1	9
61	Effects of Surfactant on Flow Boiling Heat Transfer of Ethylene Glycol/Water Mixtures in a Minitube. Heat Transfer Engineering, 2016, 37, 1126-1135.	1.9	9
62	Numerical study on heat transfer enhancement for laminar flow in a tube with mesh conical frustum inserts. Numerical Heat Transfer; Part A: Applications, 2017, 72, 21-39.	2.1	9
63	Numerical studies of gas-liquid Taylor flows in vertical capillaries using CuO/water nanofluids. International Communications in Heat and Mass Transfer, 2020, 116, 104665.	5.6	9
64	Heat Transfer Study of a Hybrid Smooth and Spirally Corrugated Tube. Heat Transfer Engineering, 2021, 42, 242-250.	1.9	9
65	An analysis of pool boiling heat transfer on nanoparticle-coated surfaces. Energy Procedia, 2019, 158, 5880-5887.	1.8	8
66	Heat transfer analysis on dimple geometries and arrangements in dimple jacketed heat exchanger. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 2775-2791.	2.8	8
67	Flow-Pattern Based Heat Transfer Correlations for Stable Flow Boiling in Micro/Minichannels. Journal of Heat Transfer, 2016, 138, .	2.1	7
68	Effects of Graphene Ethylene Glycol/Water Nanofluids on the Performance of a Brazed Plate Heat Exchanger. Journal of Nanofluids, 2018, 7, 1069-1074.	2.7	7
69	Experimental study on heat transfer of nanofluids in a vertical tube at supercritical pressures. International Communications in Heat and Mass Transfer, 2015, 63, 54-61.	5.6	6
70	On Heat Transfer Issues for Wind Energy Systems. Journal of Energy Resources Technology, Transactions of the ASME, 2017, 139, .	2.3	6
71	An improved method to visualize two regions of interest synchronously in microfluidics. Flow Measurement and Instrumentation, 2020, 72, 101715.	2.0	6
72	Thermal Conductivity of Ionic Liquid-Based Nanofluids Containing Magnesium Oxide and Aluminum Oxide Aluminum Oxide Nanoparticles. Heat Transfer Engineering, 2022, 43, 1806-1819.	1.9	6

#	Article	IF	CITATIONS
73	Pool Boiling Heat Transfer of Water on Copper Surfaces With Nanoparticles Coating. , 2017, , .		5
74	Thermal Characteristics of a Stratospheric Airship with Natural Convection and External Forced Convection. International Journal of Aerospace Engineering, 2019, 2019, 1-11.	0.9	5
75	Breakup dynamics of gas-liquid interface during Taylor bubble formation in a microchannel flow-focusing device. Experimental Thermal and Fluid Science, 2020, 113, 110043.	2.7	5
76	Dryout-type critical heat flux in vertical upward annular flow: effects of entrainment rate, initial entrained fraction and diameter. Heat and Mass Transfer, 2018, 54, 81-90.	2.1	4
77	Analysis of Fouling in Six-Start Spirally Corrugated Tubes. Heat Transfer Engineering, 2020, 41, 1885-1900.	1.9	4
78	Analysis on breakup dynamics of hydrogen taylor bubble formation in a cross-junction microchannel. International Journal of Hydrogen Energy, 2021, 46, 33438-33452.	7.1	4
79	High conversion hydrogen peroxide microchannel reactors: Design and two-phase flow instability investigation. Chemical Engineering Journal, 2021, 422, 130080.	12.7	4
80	CONVECTIVE CONDENSATION OF R410A IN MICRO-FIN TUBES. Journal of Enhanced Heat Transfer, 2012, 19, 515-525.	1.1	4
81	On Ice Accretion for Wind Turbines and Influence of Some Parameters. WIT Transactions on State-of-the-art in Science and Engineering, 2014, , 129-159.	0.0	4
82	A COMPARATIVE STUDY ON THERMAL CONDUCTIVITY AND RHEOLOGY PROPERTIES OF ALUMINA AND MULTI-WALLED CARBON NANOTUBE NANOFLUIDS. Frontiers in Heat and Mass Transfer, 0, 5, .	0.2	4
83	ANALYSIS OF NATURAL CONVECTION OF Cu AND TiO2 NANOFLUIDS INSIDE NONCONVENTIONAL ENCLOSURES. Journal of Enhanced Heat Transfer, 2018, 25, 315-332.	1.1	4
84	Spiral Coil Inserts for Heat Transfer Enhancement in a Parallel-Plate Channel. Numerical Heat Transfer; Part A: Applications, 2014, 66, 756-772.	2.1	3
85	Influence of Physical Properties of Phases on Hydrodynamics and Mass Transfer Characteristics of a Liquid-Liquid Circular Microchannel. , 2016, , .		3
86	Liquid-Liquid Flow Patterns in Microchannels. , 2017, , .		3
87	Effects of Engineered Micro/Nanostructures on Nucleate Pool Boiling Heat Transfer. Nanoscience and Nanotechnology - Asia, 2017, 7, .	0.7	3
88	Pool Boiling Heat Transfer of N-Pentane and Acetone on Nanostructured Surfaces by Electrophoretic Deposition. , 2018, , .		2
89	Investigation of Mixed Convection in an Enclosure Filled with Nanofluids of Al ₂ O ₃ –Water and Graphene-Ethylene Glycol. Journal of Nanofluids, 2019, 8, 337-348.	2.7	2
90	Coating engineering for boiling heat transfer toward immersion cooling. Advances in Heat Transfer, 2021, 53, 97-158.	0.9	2

#	Article	IF	CITATIONS
91	Simple Flow-Pattern Based Heat Transfer Correlations for Flow Boiling in Micro/Minichannels. , 2014, , ,		1
92	Two-Phase Flow Patterns in Microfluidic Cross-Shaped Junctions and Slug Hydrodynamics in the Dripping Regime. , 2017, , .		1
93	Investigation of Bubble Departure Radius in Subcooled Pool Boiling Under Microgravity Condition. , 2018, , .		1
94	The Hydraulic Cavitation Affected by Nanoparticles in Nanofluids. Computation, 2018, 6, 44.	2.0	1
95	Water-Silicone Oil Two-Phase Flow Hydrodynamics in a Square Glass Microchannel. , 2018, , .		1
96	Nucleate pool boiling heat transfer of acetone and HFE7200 on copper surfaces with nanoparticle coatings. Energy Procedia, 2019, 158, 5872-5879.	1.8	1
97	ENDWALL HEAT TRANSFER AT THE TURN SECTION IN A TWO-PASS SQUARE CHANNEL WITH AND WITHOUT RIBS. Journal of Enhanced Heat Transfer, 2013, 20, 321-332.	1.1	1
98	Generalized Adiabatic Two-Phase Pressure Drop Correlation in Evaporative Micro/Mini-Channels. , 2009, , .		0
99	Correlations for Saturated Critical Heat Flux in Microchannels. , 2010, , .		0
100	An Analysis of Saturated Critical Heat Flux in Micro/Mini-Channels. , 2010, , .		0
101	Condensation Pressure Drop and Heat Transfer in 5-mm-OD Micro-Fin Tubes. , 2012, , .		0
102	Frictional Pressure Drop Correlations for Single-Phase Flow, Condensation and Evaporation in Microfin Tubes. , 2014, , .		0
103	Effect of Entrainment on Liquid Film Dryout in Vertical Upward Annular Flow. , 2016, , .		0
104	Additional Remarks. , 2016, , 119-121.		0
105	Effects of Inlet Arrangements on Liquid-Liquid Flow Patterns in Cross-Junction Square Microchannels. , 2017, , .		0
106	Heat transfer study on a hybrid smooth and spirally corrugated tube. MATEC Web of Conferences, 2018, 240, 01038.	0.2	0
107	Effects of nanoparticles on hydraulic cavitation. MATEC Web of Conferences, 2018, 240, 03004.	0.2	0

7

#	Article	IF	CITATIONS
109	Theoretical Model of Droplets Motions on Solid Surface With Radial Wettable and Evaporation Rate Gradients. , 2018, , .		0
110	NUMERICAL STUDY ON FLOW AND CONVECTIVE HEAT TRANSFER OF AVIATION KEROSENE IN A VERTICAL MINITUBE AT SUPERCRITICAL PRESSURES. Computational Thermal Sciences, 2015, 7, 375-384.	0.9	0
111	Passive Techniques. , 2016, , 81-109.		0
112	Bubble dynamics and mechanistic boiling heat transfer prediction on a scored copper surface. Journal of Physics: Conference Series, 2021, 2116, 012009.	0.4	0