
Ralf G Dietzgen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6114768/publications.pdf Version: 2024-02-01

PALE C DIETZCEN

#	Article	IF	CITATIONS
1	Viruses Infecting Greenhood Orchids (Pterostylidinae) in Eastern Australia. Viruses, 2022, 14, 365.	3.3	6
2	Characterization of maize miRNAs responsive to maize Iranian mosaic virus infection. 3 Biotech, 2022, 12, 69.	2.2	9
3	Effects of Elevated Temperature on the Susceptibility of Capsicum Plants to Capsicum Chlorosis Virus Infection. Pathogens, 2022, 11, 200.	2.8	8
4	Temporal expression of defence and susceptibility genes and tospovirus accumulation in capsicum chlorosis virus-infected capsicum. Archives of Virology, 2022, 167, 1061-1074.	2.1	0
5	Development of a Polymerase Spiral Reaction-Based Isothermal Assay for Rapid Identification of Thrips palmi. Frontiers in Molecular Biosciences, 2022, 9, 853339.	3.5	5
6	ICTV Virus Taxonomy Profile: Rhabdoviridae 2022. Journal of General Virology, 2022, 103, .	2.9	46
7	Tospoviruses Induce Small Interfering RNAs Targeting Viral Sequences and Endogenous Transcripts in Solanaceous Plants. Pathogens, 2022, 11, 745.	2.8	4
8	Natural Defect of a Plant Rhabdovirus Glycoprotein Gene: A Case Study of Virus–Plant Coevolution. Phytopathology, 2021, 111, 227-236.	2.2	21
9	A rapid field-based assay using recombinase polymerase amplification for identification of Thrips palmi, a vector of tospoviruses. Journal of Pest Science, 2021, 94, 219-229.	3.7	23
10	Plant Rhabdoviruses (Rhabdoviridae). , 2021, , 567-580.		1
11	Progression of Watermelon Bud Necrosis Virus Infection in Its Vector, Thrips palmi. Cells, 2021, 10, 392.	4.1	8
12	Joá yellow blotch-associated virus, a new alphanucleorhabdovirus from a wild solanaceous plant in Brazil. Archives of Virology, 2021, 166, 1615-1622.	2.1	3
13	Illuminating the Plant Rhabdovirus Landscape through Metatranscriptomics Data. Viruses, 2021, 13, 1304.	3.3	45
14	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
15	Frontiers Approaches to the Diagnosis of Thrips (Thysanoptera): How Effective Are the Molecular and Electronic Detection Platforms?. Insects, 2021, 12, 920.	2.2	9
16	ICTV Virus Taxonomy Profile: Nyamiviridae 2021. Journal of General Virology, 2021, 102, .	2.9	1
17	Genetics of Thrips palmi (Thysanoptera: Thripidae). Journal of Pest Science, 2020, 93, 27-39.	3.7	20
18	Genome-enabled insights into the biology of thrips as crop pests. BMC Biology, 2020, 18, 142.	3.8	54

#	Article	IF	CITATIONS
19	The Plant Negative-Sense RNA Virosphere: Virus Discovery Through New Eyes. Frontiers in Microbiology, 2020, 11, 588427.	3.5	29
20	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
21	Viromes of Ten Alfalfa Plants in Australia Reveal Diverse Known Viruses and a Novel RNA Virus. Pathogens, 2020, 9, 214.	2.8	20
22	Molecular characterization of a novel cytorhabdovirus with a unique genomic organization infecting yerba mate (llex paraguariensis) in Argentina. Archives of Virology, 2020, 165, 1475-1479.	2.1	14
23	Insect cell culture as a tool in plant virus research: a historical overview. Phytoparasitica, 2020, 48, 287-303.	1.2	4
24	Diversity and epidemiology of plant rhabdoviruses. Virus Research, 2020, 281, 197942.	2.2	56
25	Inoculum Dynamics and Infection of Citrus Fruit by <i>Phyllosticta citricarpa</i> . Phytopathology, 2020, 110, 1680-1692.	2.2	12
26	Genome-Wide Analysis of Alternative Splicing in Zea mays during Maize Iranian Mosaic Virus Infection. Plant Molecular Biology Reporter, 2019, 37, 413-420.	1.8	11
27	Taxonomy of the order Mononegavirales: second update 2018. Archives of Virology, 2019, 164, 1233-1244.	2.1	70
28	Taxonomy of the order Mononegavirales: update 2019. Archives of Virology, 2019, 164, 1967-1980.	2.1	224
29	Phyllosticta capitalensis and P. paracapitalensis are endophytic fungi that show potential to inhibit pathogenic P. citricarpa on citrus. Australasian Plant Pathology, 2019, 48, 281-296.	1.0	11
30	Letter to the Editor: Bean-Associated Cytorhabdovirus and Papaya Cytorhabdovirus are Strains of the Same Virus. Viruses, 2019, 11, 230.	3.3	9
31	Complete genome sequence of maize sterile stunt virus. Archives of Virology, 2019, 164, 1221-1223.	2.1	4
32	ICTV Virus Taxonomy Profile: Artoviridae. Journal of General Virology, 2019, 100, 1202-1203.	2.9	1
33	Development and validation of PCR assays for detection of alfalfa dwarf disease-associated viruses in Australian lucerne pastures. Australasian Plant Pathology, 2018, 47, 215-225.	1.0	5
34	Taxonomy of the order Mononegavirales: update 2018. Archives of Virology, 2018, 163, 2283-2294.	2.1	153
35	First report of orchid fleck virus and its mite vector on green cordyline. Australasian Plant Disease Notes, 2018, 13, 1.	0.7	5
36	Gene expression and population polymorphism of maize Iranian mosaic virus in Zea mays, and intracellular localization and interactions of viral N, P, and M proteins in Nicotiana benthamiana. Virus Genes, 2018, 54, 290-296.	1.6	12

#	Article	IF	CITATIONS
37	Pathogenicity of <i>Phyllosticta citricarpa</i> Ascospores on <i>Citrus</i> spp Plant Disease, 2018, 102, 1386-1393.	1.4	12
38	Completed sequence and corrected annotation of the genome of maize Iranian mosaic virus. Archives of Virology, 2018, 163, 767-770.	2.1	7
39	Tomato spotted wilt virus infects spider lily plants in Australia. Australasian Plant Disease Notes, 2018, 13, 1.	0.7	1
40	Transcriptome-wide responses of adult melon thrips (Thrips palmi) associated with capsicum chlorosis virus infection. PLoS ONE, 2018, 13, e0208538.	2.5	20
41	Plant rhabdoviruses—their origins and vector interactions. Current Opinion in Virology, 2018, 33, 198-207.	5.4	70
42	Editorial overview: Plant virus–vector interactions. Current Opinion in Virology, 2018, 33, iii-v.	5.4	0
43	The Westward Journey of Alfalfa Leaf Curl Virus. Viruses, 2018, 10, 542.	3.3	12
44	Detection and profiling of circular RNAs in uninfected and maize Iranian mosaic virus-infected maize. Plant Science, 2018, 274, 402-409.	3.6	42
45	Dichorhaviruses in their Host Plants and Mite Vectors. Advances in Virus Research, 2018, 102, 119-148.	2.1	51
46	Changes in maize transcriptome in response to maize Iranian mosaic virus infection. PLoS ONE, 2018, 13, e0194592.	2.5	15
47	Distribution and genetic variability of alfalfa dwarf virus, a cytorhabdovirus associated with alfalfa dwarf disease in Argentina. Virus Genes, 2018, 54, 612-615.	1.6	16
48	Development of Model Systems for Plant Rhabdovirus Research. Advances in Virus Research, 2018, 102, 23-57.	2.1	15
49	ICTV Virus Taxonomy Profile: Rhabdoviridae. Journal of General Virology, 2018, 99, 447-448.	2.9	207
50	Sexual Reproduction in the Citrus Black Spot Pathogen, <i>Phyllosticta citricarpa</i> . Phytopathology, 2017, 107, 732-739.	2.2	33
51	Taxonomy of the order Mononegavirales: update 2017. Archives of Virology, 2017, 162, 2493-2504.	2.1	173
52	Functional analysis of a weak viral RNA silencing suppressor using two GFP variants as silencing inducers. Journal of Virological Methods, 2017, 239, 50-57.	2.1	5
53	The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Research, 2017, 227, 158-170.	2.2	200
54	Intracellular Localization, Interactions and Functions of Capsicum Chlorosis Virus Proteins. Frontiers in Microbiology, 2017, 8, 612.	3.5	16

#	Article	IF	CITATIONS
55	ICTV Virus Taxonomy Profile: Nyamiviridae. Journal of General Virology, 2017, 98, 2914-2915.	2.9	5
56	Plant Virus–Insect Vector Interactions: Current and Potential Future Research Directions. Viruses, 2016, 8, 303.	3.3	161
57	Taxonomy of the order Mononegavirales: update 2016. Archives of Virology, 2016, 161, 2351-2360.	2.1	407
58	Complete genome sequence of Colocasia bobone disease-associated virus, a putative cytorhabdovirus infecting taro. Archives of Virology, 2016, 161, 745-748.	2.1	13
59	Complete genome sequence of a new enamovirus from Argentina infecting alfalfa plants showing dwarfism symptoms. Archives of Virology, 2016, 161, 2029-2032.	2.1	30
60	Heterotrimeric G-proteins facilitate resistance to plant pathogenic viruses in <i>Arabidopsis thaliana</i> (L.) Heynh. Plant Signaling and Behavior, 2016, 11, e1212798.	2.4	21
61	Alfalfa dwarf cytorhabdovirus P protein is a local and systemic RNA silencing supressor which inhibits programmed RISC activity and prevents transitive amplification of RNA silencing. Virus Research, 2016, 224, 19-28.	2.2	15
62	Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials. Systematic Biology, 2016, 66, syw096.	5.6	17
63	Cytorhabdovirus P protein suppresses RISC-mediated cleavage and RNA silencing amplification in planta. Virology, 2016, 490, 27-40.	2.4	28
64	Cytorhabdovirus P3 genes encode 30K-like cell-to-cell movement proteins. Virology, 2016, 489, 20-33.	2.4	32
65	Diversity and evolutionary history of lettuce necrotic yellows virus in Australia and New Zealand. Archives of Virology, 2016, 161, 269-277.	2.1	20
66	First Report of Orchid fleck virus in Lilyturf (Liriope spicata) in Australia. Plant Disease, 2016, 100, 1028-1028.	1.4	8
67	Transcriptome Analysis of Capsicum Chlorosis Virus-Induced Hypersensitive Resistance Response in Bell Capsicum. PLoS ONE, 2016, 11, e0159085.	2.5	27
68	Simplified Assays for Evaluation of Resistance to Alternaria brassicicola and Turnip Mosaic Virus. Methods in Molecular Biology, 2016, 1363, 219-228.	0.9	1
69	Response from Ralf Dietzgen to "Comment on The complete nucleotide sequence and genome organization of pea streak virus (genus Carlavirus)― Archives of Virology, 2015, 160, 2657-2657.	2.1	Ο
70	Mango Fruit Extracts Differentially Affect Proliferation and Intracellular Calcium Signalling in MCF-7 Human Breast Cancer Cells. Journal of Chemistry, 2015, 2015, 1-10.	1.9	14
71	In Vivo Localization of Iris yellow spot Tospovirus (Bunyaviridae)-Encoded Proteins and Identification of Interacting Regions of Nucleocapsid and Movement Proteins. PLoS ONE, 2015, 10, e0118973.	2.5	27
72	Complete genome sequence and intracellular protein localization of Datura yellow vein nucleorhabdovirus. Virus Research, 2015, 205, 7-11.	2.2	24

#	Article	IF	CITATIONS
73	Complete genome sequence and integrated protein localization and interaction map for alfalfa dwarf virus, which combines properties of both cytoplasmic and nuclear plant rhabdoviruses. Virology, 2015, 483, 275-283.	2.4	54
74	Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties. BMC Genomics, 2015, 16, 561.	2.8	22
75	Polyphenolic contents and the effects of methanol extracts from mango varieties on breast cancer cells. Food Science and Biotechnology, 2015, 24, 265-271.	2.6	17
76	Cytorhabdovirus phosphoprotein shows RNA silencing suppressor activity in plants, but not in insect cells. Virology, 2015, 476, 413-418.	2.4	24
77	First complete genome sequence of a capsicum chlorosis tospovirus isolate from Australia with an unusually large S RNA intergenic region. Archives of Virology, 2015, 160, 869-872.	2.1	16
78	Estrogen modulation properties of mangiferin and quercetin and the mangiferin metabolite norathyriol. Food and Function, 2015, 6, 1847-1854.	4.6	18
79	In memoriam – Richard M. Elliott (1954–2015). Journal of General Virology, 2015, 96, 1975-1978.	2.9	4
80	Mangomics: Information Systems Supporting Advanced Mango Breeding. , 2015, , 281-307.		0
81	Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names. Viruses, 2014, 6, 3663-3682.	3.3	49
82	Expressed Sequence Tag-Simple Sequence Repeat (EST-SSR) Marker Resources for Diversity Analysis of Mango (Mangifera indica L.). Diversity, 2014, 6, 72-87.	1.7	30
83	Plant rhabdoviruses: new insights and research needs in the interplay of negative-strand RNA viruses with plant and insect hosts. Archives of Virology, 2014, 159, 1889-1900.	2.1	51
84	Phytochemical extraction, characterisation and comparative distribution across four mango (Mangifera indica L.) fruit varieties. Food Chemistry, 2014, 149, 253-263.	8.2	65
85	Dichorhavirus: a proposed new genus for Brevipalpus mite-transmitted, nuclear, bacilliform, bipartite, negative-strand RNA plant viruses. Archives of Virology, 2014, 159, 607-619.	2.1	61
86	Partial polymerase gene sequence, phylogeny and RT-PCR diagnostic assay for Datura yellow vein nucleorhabdovirus. Australasian Plant Disease Notes, 2013, 8, 21-25.	0.7	5
87	Virus species polemics: 14 senior virologists oppose a proposed change to the ICTV definition of virus species. Archives of Virology, 2013, 158, 1115-1119.	2.1	32
88	Genetic diversity of the Australian National Mango Genebank. Scientia Horticulturae, 2013, 150, 213-226.	3.6	46
89	Nyamiviridae: Proposal for a new family in the order Mononegavirales. Archives of Virology, 2013, 158, 2209-2226.	2.1	29
90	Technoeconomic analysis of renewable aviation fuel from microalgae, <i>Pongamia pinnata</i> , and sugarcane. Biofuels, Bioproducts and Biorefining, 2013, 7, 416-428.	3.7	112

#	Article	IF	CITATIONS
91	Construction of a <i>Sonchus Yellow Net Virus</i> Minireplicon: a Step toward Reverse Genetic Analysis of Plant Negative-Strand RNA Viruses. Journal of Virology, 2013, 87, 10598-10611.	3.4	46
92	Mango (Mangifera indica L.) peel extract fractions from different cultivars differentially affect lipid accumulation in 3T3-L1 adipocyte cells. Food and Function, 2013, 4, 481.	4.6	8
93	IMPLEMENTATION OF SSR MARKERS IN MANGO BREEDING IN AUSTRALIA. Acta Horticulturae, 2013, , 259-267.	0.2	5
94	Lettuce necrotic yellows cytorhabdovirus protein localization and interaction map, and comparison with nucleorhabdoviruses. Journal of General Virology, 2012, 93, 906-914.	2.9	37
95	Mango fruit peel and flesh extracts affect adipogenesis in 3T3-L1 cells. Food and Function, 2012, 3, 828.	4.6	30
96	Use of Hairpin RNA Constructs for Engineering Plant Virus Resistance. Methods in Molecular Biology, 2012, 894, 191-208.	0.9	12
97	In planta localization and interactions of impatiens necrotic spot tospovirus proteins. Journal of General Virology, 2012, 93, 2490-2495.	2.9	34
98	Major Australian tropical fruits biodiversity: Bioactive compounds and their bioactivities. Molecular Nutrition and Food Research, 2012, 56, 357-387.	3.3	36
99	Rhabdovirus accessory genes. Virus Research, 2011, 162, 110-125.	2.2	157
100	Bioactivity of Mango Flesh and Peel Extracts on Peroxisome Proliferatorâ€Activated Receptor γ[PPARγ] Activation and MCFâ€7 Cell Proliferation: Fraction and Fruit Variability. Journal of Food Science, 2011, 76, H11-8.	3.1	21
101	Development of a Bio-PCR Protocol for the Detection of Xanthomonas arboricola pv. pruni. Plant Disease, 2011, 95, 1109-1115.	1.4	15
102	Cytorhabdovirus. , 2011, , 1709-1713.		9
103	A proposal to change existing virus species names to non-Latinized binomials. Archives of Virology, 2010, 155, 1909-1919.	2.1	29
104	Isolation and functional characterization of a lycopene β-cyclase gene that controls fruit colour of papaya (Carica papaya L.). Journal of Experimental Botany, 2010, 61, 33-39.	4.8	93
105	The rhabdoviruses: Biodiversity, phylogenetics, and evolutionâ [~] †. Infection, Genetics and Evolution, 2009, 9, 541-553.	2.3	152
106	An Asparaginyl Endopeptidase Mediates in Vivo Protein Backbone Cyclization. Journal of Biological Chemistry, 2007, 282, 29721-29728.	3.4	207
107	Fate of hairpin transcript components during RNA silencing and its suppression in transgenic virus-resistant tobacco. Journal of Biotechnology, 2006, 126, 115-122.	3.8	3
108	Completion of the genome sequence of Lettuce necrotic yellows virus, type species of the genus Cytorhabdovirus. Virus Research, 2006, 118, 16-22.	2.2	62

#	Article	IF	CITATIONS
109	Discovery of genes associated with fruit ripening in Carica papaya using expressed sequence tags. Plant Science, 2006, 170, 356-363.	3.6	38
110	Biology of Plant Rhabdoviruses. Annual Review of Phytopathology, 2005, 43, 623-660.	7.8	249
111	Host range, symptom expression and RNA 3 sequence analyses of six Australian strains ofCucumber mosaic virus. Australasian Plant Pathology, 2004, 33, 505.	1.0	20
112	Peanut Stripe Potyvirus Resistance in Peanut (Arachis Hypogaea L.) Plants Carrying Viral Coat Protein Gene Sequences. Transgenic Research, 2004, 13, 59-67.	2.4	40
113	Cucumber mosaic virus Infection Transiently Breaks dsRNA-Induced Transgenic Immunity to Potato virus Y in Tobacco. Molecular Plant-Microbe Interactions, 2003, 16, 936-944.	2.6	39
114	pGD vectors: versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. Plant Journal, 2002, 31, 375-383.	5.7	370
115	Suppression of gene silencing: a threat to virus-resistant transgenic plants?. Trends in Plant Science, 2001, 6, 246-247.	8.8	26
116	Differentiation of Peanut Seedborne Potyviruses and Cucumoviruses by RT-PCR. Plant Disease, 2001, 85, 989-992.	1.4	15
117	Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Molecular Biology, 2001, 47, 399-412.	3.9	63
118	Real-time RT-PCR fluorescent detection of tomato spotted wilt virus. Journal of Virological Methods, 2000, 88, 1-8.	2.1	116
119	Development of a multiplex immunocapture PCR with colourimetric detection for viruses of banana. Journal of Virological Methods, 2000, 89, 75-88.	2.1	93
120	Efficient organogenesis of an Australian passionfruit hybrid (Passiflora edulis x Passiflora edulis var.) Tj ETQq0 0 (O rgBT ∕Ov	erlock 10 Tf 5
121	A promoter from sugarcane bacilliform badnavirus drives transgene expression in banana and other monocot and dicot plants. Plant Molecular Biology, 1999, 39, 1221-1230.	3.9	65
122	Retrotransposon-like sequences integrated into the genome of pineapple, Ananas comosus. Plant Molecular Biology, 1998, 38, 461-465.	3.9	27
123	Evidence for a Third Taxonomic Subgroup of Peanut Stunt Virus from China. Plant Disease, 1998, 82, 992-998.	1.4	16
124	Detection of DNA and RNA plant viruses by PCR and RT-PCR using a rapid virus release protocol without tissue homogenization. Journal of Virological Methods, 1995, 54, 85-95.	2.1	102
125	Digoxigenin-Labeled cRNA Probes for the Detection of Two Potyviruses Infecting Peanut (<i>Arachis) Tj ETQq1 1</i>	0.784314 1.4	FrgBT /Overlo
126	Cucumber MOSAIC Virus. Advances in Virus Research, 1992, 41, 281-348.	2.1	698

#	Article	IF	CITATIONS
127	Alleged common antigenic determinant of tobacco mosaic virus coat protein and the host protein ribulose-1, 5-bisphosphate carâ ylase is an artifact of indirect ELISA and western blotting. Virology, 1991, 184, 397-398.	2.4	9
128	Analysis of lettuce necrotic yellows virus structural proteins with monoclonal antibodies and concanavalin A. Virology, 1988, 166, 486-494.	2.4	24
129	Tobacco mosaic virus particles contain ubiquitinated coat protein subunits. Virology, 1988, 165, 310-312.	2.4	65
130	An azophenolic colorimetric reagent for use in enzyme-linked immunosorbent assays. Analytical Biochemistry, 1987, 164, 297-302.	2.4	2
131	Tobacco mosaic virus coat protein and the large subunit of the host protein ribulose-1,5-bisphosphate carboxylase share a common antigenic determinant. Virology, 1986, 155, 262-266.	2.4	19
132	Characterization of antigenic structures on arabis mosaic virus with monoclonal antibodies. Archives of Virology, 1986, 91, 163-173.	2.1	6
133	Monoclonal Antibodies Against Plant Viruses. Advances in Virus Research, 1984, 29, 131-168.	2.1	21