Daniel E Rozen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6114672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The genetic architecture underlying prey-dependent performance in a microbial predator. Nature Communications, 2022, 13, 319.	5.8	4
2	Ecological drivers of division of labour in Streptomyces. Current Opinion in Microbiology, 2022, 67, 102148.	2.3	9
3	Allele-specific collateral and fitness effects determine the dynamics of fluoroquinolone resistance evolution. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121768119.	3.3	9
4	Mutational meltdown of putative microbial altruists in Streptomyces coelicolor colonies. Nature Communications, 2022, 13, 2266.	5.8	10
5	Reversible bacteriophage resistance by shedding the bacterial cell wall. Open Biology, 2022, 12, .	1.5	25
6	Generating Heterokaryotic Cells via Bacterial Cell-Cell Fusion. Microbiology Spectrum, 2022, 10, .	1.2	3
7	Competition Sensing Changes Antibiotic Production in <i>Streptomyces</i> . MBio, 2021, 12, .	1.8	29
8	Effect of carcass contamination on necrophagous invertebrate performance. Ecological Processes, 2021, 10, .	1.6	0
9	Design principles of collateral sensitivity-based dosing strategies. Nature Communications, 2021, 12, 5691.	5.8	23
10	Spatial structure increases the benefits of antibiotic production in <i>Streptomyces</i> *. Evolution; International Journal of Organic Evolution, 2020, 74, 179-187.	1.1	17
11	Use of Permanent Wall-Deficient Cells as a System for the Discovery of New-to-Nature Metabolites. Microorganisms, 2020, 8, 1897.	1.6	5
12	Manganese complex [Mn(CO)3(tpa-lº3N)]Br increases antibiotic sensitivity in multidrug resistant Streptococcus pneumoniae. Journal of Global Antimicrobial Resistance, 2020, 22, 594-597.	0.9	10
13	Antibiotic production in <i>Streptomyces</i> is organized by a division of labor through terminal genomic differentiation. Science Advances, 2020, 6, eaay5781.	4.7	60
14	Fitness costs of phoretic nematodes in the burying beetle, <i>Nicrophorus vespilloides</i> . Ecology and Evolution, 2019, 9, 26-35.	0.8	9
15	Unborn wasps fumigate their dinner. Journal of Experimental Biology, 2019, 222, .	0.8	0
16	How Kermit got streetwise. Journal of Experimental Biology, 2019, 222, .	0.8	0
17	Lice dodge death by going to the light. Journal of Experimental Biology, 2019, 222, .	0.8	0
18	Flour beetles evolve to arrest their killers. Journal of Experimental Biology, 2019, 222, .	0.8	0

#	Article	IF	CITATIONS
19	Gut microbiota in the burying beetle, <i>Nicrophorus vespilloides</i> , provide colonization resistance against larval bacterial pathogens. Ecology and Evolution, 2018, 8, 1646-1654.	0.8	42
20	Eating poop makes naked mole-rats motherly. Journal of Experimental Biology, 2018, 221, .	0.8	0
21	Sick ants save themselves by acid-spraying their sisters. Journal of Experimental Biology, 2018, 221, .	0.8	0
22	Conserved collateral antibiotic susceptibility networks in diverse clinical strains of Escherichia coli. Nature Communications, 2018, 9, 3673.	5.8	76
23	Eavesdropping and crosstalk between secreted quorum sensing peptide signals that regulate bacteriocin production in <i>Streptococcus pneumoniae</i> . ISME Journal, 2018, 12, 2363-2375.	4.4	32
24	How ticks put the B in blood. Journal of Experimental Biology, 2018, 221, .	0.8	0
25	Gut Microbiota Colonization and Transmission in the Burying Beetle Nicrophorus vespilloides throughout Development. Applied and Environmental Microbiology, 2017, 83, .	1.4	55
26	Distance-dependent danger responses in bacteria. Current Opinion in Microbiology, 2017, 36, 95-101.	2.3	35
27	Pherotype Polymorphism in Streptococcus pneumoniae Has No Obvious Effects on Population Structure and Recombination. Genome Biology and Evolution, 2017, 9, 2546-2559.	1.1	9
28	Wars between microbes on roots and fruits. F1000Research, 2017, 6, 343.	0.8	45
29	When symbionts overstay their welcome. Journal of Experimental Biology, 2016, 219, 2969-2970.	0.8	Ο
30	Understanding Microbial Divisions of Labor. Frontiers in Microbiology, 2016, 7, 2070.	1.5	40
31	Steady at the wheel: conservative sex and the benefits of bacterial transformation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150528.	1.8	50
32	Diverse Ecological Strategies Are Encoded by <i>Streptococcus pneumoniae</i> Bacteriocin-Like Peptides. Genome Biology and Evolution, 2016, 8, 1072-1090.	1.1	43
33	Expression of Streptococcus pneumoniae Bacteriocins Is Induced by Antibiotics via Regulatory Interplay with the Competence System. PLoS Pathogens, 2016, 12, e1005422.	2.1	78
34	The dubious motives of generous men. Journal of Experimental Biology, 2015, 218, 1980-1980.	0.8	0
35	A head for sex. Journal of Experimental Biology, 2015, 218, 2984-2985.	0.8	0
36	Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11054-11059.	3.3	198

#	Article	IF	CITATIONS
37	The invisibility cloak of filefish. Journal of Experimental Biology, 2015, 218, 966-966.	0.8	1
38	Fitness Trade-offs Result in the Illusion of Social Success. Current Biology, 2015, 25, 1086-1090.	1.8	41
39	Different explanations for looking like the mailman. Journal of Experimental Biology, 2015, 218, 166-166.	0.8	Ο
40	Egg survival is reduced by grave-soil microbes in the carrion beetle, Nicrophorus vespilloides. BMC Evolutionary Biology, 2014, 14, 208.	3.2	36
41	The benefits of a stinky chick. Journal of Experimental Biology, 2014, 217, 2228-2228.	0.8	Ο
42	Frog's little helpers. Journal of Experimental Biology, 2014, 217, 1012-1013.	0.8	0
43	Buff boys and clever girls at the salt lick. Journal of Experimental Biology, 2014, 217, 3391-3391.	0.8	0
44	Faecal pharmaceuticals and external immunity in termites. Journal of Experimental Biology, 2014, 217, 161-161.	0.8	1
45	Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nature Reviews Microbiology, 2014, 12, 115-124.	13.6	379
46	Lateâ€life and intergenerational effects of larval exposure to microbial competitors in the burying beetle <i>Nicrophorus vespilloides</i> . Journal of Evolutionary Biology, 2014, 27, 1205-1216.	0.8	12
47	Antimicrobial secretions and social immunity in larval burying beetles, Nicrophorus vespilloides. Animal Behaviour, 2013, 86, 741-745.	0.8	42
48	THE ELECTRIFYING BUZZ OF BEES. Journal of Experimental Biology, 2013, 216, iv-iv.	0.8	0
49	Significant variation in transformation frequency in <i>Streptococcus pneumoniae</i> . ISME Journal, 2013, 7, 791-799.	4.4	50
50	Conservative Sex and the Benefits of Transformation in Streptococcus pneumoniae. PLoS Pathogens, 2013, 9, e1003758.	2.1	33
51	PARASITES AND THE GREAT DIVIDE. Journal of Experimental Biology, 2013, 216, vi-vi.	0.8	0
52	BIRDS' DIGESTION CLEANSES PASSING SEEDS. Journal of Experimental Biology, 2013, 216, v-vi.	0.8	0
53	A MOTHER'S SECRET PASSWORD. Journal of Experimental Biology, 2013, 216, v-v.	0.8	0
54	DRUGGED BEES GO MISSING. Journal of Experimental Biology, 2012, 215, iv-iv.	0.8	0

4

#	Article	IF	CITATIONS
55	Variation in Streptococcus pneumoniae susceptibility to human antimicrobial peptides may mediate intraspecific competition. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3803-3811.	1.2	32
56	PEPPERED MOTHS IN BLACK AND WHITE. Journal of Experimental Biology, 2012, 215, vi-vi.	0.8	0
57	A RUB-DOWN FOR STRESSED FISH. Journal of Experimental Biology, 2012, 215, iv-iv.	0.8	0
58	SEX AS A WEAPON AGAINST PARASITES. Journal of Experimental Biology, 2012, 215, v-v.	0.8	0
59	A Streptococcus pneumoniae infection model in larvae of the wax moth Galleria mellonella. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 2653-2660.	1.3	41
60	Killing as means of promoting biodiversity. Biochemical Society Transactions, 2012, 40, 1512-1516.	1.6	19
61	GENETIC VARIATION FOR ANTIBIOTIC PERSISTENCE IN <i>ESCHERICHIA COLI</i> . Evolution; International Journal of Organic Evolution, 2012, 66, 933-939.	1.1	34
62	Mechanisms and fitness effects of antibacterial defences in a carrion beetle. Journal of Evolutionary Biology, 2012, 25, 930-937.	0.8	104
63	COMPETENCE INCREASES SURVIVAL DURING STRESS IN STREPTOCOCCUS PNEUMONIAE. Evolution; International Journal of Organic Evolution, 2011, 65, 3475-3485.	1.1	53
64	Nextâ€generation sequencing as a tool to study microbial evolution. Molecular Ecology, 2011, 20, 972-980.	2.0	66
65	SQUIDS IN HEAT. Journal of Experimental Biology, 2011, 214, v-vi.	0.8	0
66	PARASITES AND ZOMBIE GAMMARIDS. Journal of Experimental Biology, 2011, 214, iv-iv.	0.8	0
67	Signal diffusion and the mitigation of social exploitation in pneumococcal competence signalling. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2991-2999.	1.2	27
68	Polymorphic Competence Peptides Do Not Restrict Recombination in Streptococcus pneumoniae. Molecular Biology and Evolution, 2010, 27, 694-702.	3.5	19
69	Oscillations in continuous culture populations of Streptococcus pneumoniae : population dynamics and the evolution of clonal suicide. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 999-1008.	1.2	21
70	The impact of population size on the evolution of asexual microbes on smooth versus rugged fitness landscapes. BMC Evolutionary Biology, 2009, 9, 236.	3.2	36
71	Quantification of Social Behavior in D. discoideum Reveals Complex Fixed and Facultative Strategies. Current Biology, 2009, 19, 1373-1377.	1.8	93
72	FITNESS TRADE-OFFS MODIFY COMMUNITY COMPOSITION UNDER CONTRASTING DISTURBANCE REGIMES IN <i>PSEUDOMONAS FLUORESCENS</i> MICROCOSMS. Evolution; International Journal of Organic Evolution, 2009, 63, 3031-3037.	1.1	5

#	Article	IF	CITATIONS
73	Death and cannibalism in a seasonal environment facilitate bacterial coexistence. Ecology Letters, 2009, 12, 34-44.	3.0	108
74	Antimicrobial strategies in burying beetles breeding on carrion. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17890-17895.	3.3	171
75	Heterogeneous Adaptive Trajectories of Small Populations on Complex Fitness Landscapes. PLoS ONE, 2008, 3, e1715.	1.1	80
76	Fitness Costs of Fluoroquinolone Resistance in Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2007, 51, 412-416.	1.4	133
77	The effect of population structure on the adaptive radiation of microbial populations evolving in spatially structured environments. Ecology Letters, 2006, 9, 1041-1048.	3.0	84
78	Non-inherited antibiotic resistance. Nature Reviews Microbiology, 2006, 4, 556-562.	13.6	447
79	Clonal Interference and the Periodic Selection of New Beneficial Mutations in Escherichia coli. Genetics, 2006, 172, 2093-2100.	1.2	115
80	Molecular Phylogeny and Evolution of Morphology in the Social Amoebas. Science, 2006, 314, 661-663.	6.0	232
81	Limits to adaptation in asexual populations. Journal of Evolutionary Biology, 2005, 18, 779-788.	0.8	86
82	PLEIOTROPIC EFFECTS OF BENEFICIAL MUTATIONS IN ESCHERICHIA COLI. Evolution; International Journal of Organic Evolution, 2005, 59, 2343-2352.	1.1	92
83	Long-Term Experimental Evolution in Escherichia coli. XIII. Phylogenetic History of a Balanced Polymorphism. Journal of Molecular Evolution, 2005, 61, 171-180.	0.8	73
84	PLEIOTROPIC EFFECTS OF BENEFICIAL MUTATIONS IN ESCHERICHIA COLI. Evolution; International Journal of Organic Evolution, 2005, 59, 2343.	1.1	3
85	Evolutionary origin of cAMP-based chemoattraction in the social amoebae. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6385-6390.	3.3	67
86	Pleiotropic effects of beneficial mutations in Escherichia coli. Evolution; International Journal of Organic Evolution, 2005, 59, 2343-52.	1.1	45
87	Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1072-1077.	3.3	409
88	Fitness Effects of Fixed Beneficial Mutations in Microbial Populations. Current Biology, 2002, 12, 1040-1045.	1.8	192
89	cAMP signaling in Dictyostelium. Complexity of cAMP synthesis, degradation and detection. Journal of Muscle Research and Cell Motility, 2002, 23, 793-802.	0.9	89
90	Longâ€Term Experimental Evolution inEscherichia coli. VIII. Dynamics of a Balanced Polymorphism. American Naturalist, 2000, 155, 24-35.	1.0	247

#	Article	IF	CITATIONS
91	Pervasive compensatory adaptation inEscherichia coli. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 515-522.	1.2	127
92	Molecular computing: Does DNA compute?. Current Biology, 1996, 6, 254-257.	1.8	13