Quan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6114439/publications.pdf Version: 2024-02-01

		109264	143943
111	3,802	35	57
papers	citations	h-index	g-index
113	113	113	3336
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reinforcing DNA Supramolecular Hydrogel with Polymeric Multiple-Unit Linker. CCS Chemistry, 2023, 5, 434-444.	4.6	15
2	Nonlinear rheological behavior of telechelic ionomers with the distribution of ionic stickers at the ends. Journal of Rheology, 2022, 66, 1-16.	1.3	7
3	Advances and New Opportunities in the Rheology of Physically and Chemically Reversible Polymers. Macromolecules, 2022, 55, 697-714.	2.2	54
4	Nonlinear Extensional Rheology of Poly(<i>n</i> -alkyl methacrylate) Melts with a Fixed Number of Kuhn Segments and Entanglements per Chain. ACS Macro Letters, 2022, 11, 484-490.	2.3	7
5	Lysozyme amyloid fibril templated phenolic-iron hydrogels cross-linked with genipin. Food Structure, 2022, 32, 100271.	2.3	0
6	Higher affinity of polyphenol to zein than to amyloid fibrils leading to nanoparticle-embed network wall scaffold to construct amyloid fibril-zein-EGCG hydrogels for coating of beef. Food Research International, 2022, 156, 111187.	2.9	14
7	Shear-induced Precursors of Fibrillar Crystals of Poly(butene-1): A Rheological Study. Chinese Journal of Polymer Science (English Edition), 2022, 40, 618-623.	2.0	2
8	Multiple gateway placement in largeâ€scale constellation networks with interâ€satellite links. International Journal of Satellite Communications and Networking, 2021, 39, 47-64.	1.2	18
9	Rheological propertiesÂof sulfonated polystyrene ionomers at high-ion contents. Rheologica Acta, 2021, 60, 241-249.	1.1	10
10	Analysis of Inter-Satellite Link Paths for LEO Mega-Constellation Networks. IEEE Transactions on Vehicular Technology, 2021, 70, 2743-2755.	3.9	83
11	Brittle-to-Ductile Transition of Sulfonated Polystyrene Ionomers. ACS Macro Letters, 2021, 10, 503-509.	2.3	16
12	Thermodynamics and Reaction Kinetics of Symmetric Vitrimers Based on Dioxaborolane Metathesis. Macromolecules, 2021, 54, 6799-6809.	2.2	23
13	Crosslinking ABA-type elastomers with polyoxometalate: A convenient molecular design of double network. Polymer, 2021, 228, 123932.	1.8	3
14	Flow-induced crystalline precursors in entangled Poly(vinyl alcohol) aqueous solutions. Polymer, 2021, 229, 123960.	1.8	7
15	How to Choose a Secondary Interaction to Improve Stretchability of Associative Polymers?. Macromolecules, 2021, 54, 8112-8121.	2.2	15
16	Conformation and persistence length of chitosan in aqueous solutions of different ionic strengths via asymmetric flow field-flow fractionation. Carbohydrate Polymers, 2021, 271, 118402.	5.1	11
17	Dynamic metallopolymer networks: a protocol to quantify Pt(<scp>ii</scp>)â<⁻Pt(<scp>ii</scp>) and π–π stacking interactions. Journal of Materials Chemistry C, 2021, 9, 15422-15427.	2.7	4
18	Nonlinear Rheology of Telechelic Ionomers Based on Sodium Sulfonate and Carboxylate. Macromolecules, 2021, 54, 9724-9738.	2.2	14

#	Article	IF	CITATIONS
19	Horizontal extensional rheometry (HER) for low viscosity polymer melts. Journal of Rheology, 2020, 64, 177-190.	1.3	10
20	Topology Virtualization and Dynamics Shielding Method for LEO Satellite Networks. IEEE Communications Letters, 2020, 24, 433-437.	2.5	23
21	Chain microstructure of two highly impact polypropylene resins with good balance between stiffness and toughness. Polymer, 2020, 188, 122146.	1.8	23
22	Molecular Weight Dependence of Associative Behavior in Polyimide/DMF Solutions. Chinese Journal of Polymer Science (English Edition), 2020, 38, 629-637.	2.0	9
23	An Analytic Method of Wavelength Requirements in Dynamic Optical Satellite Networks. IEEE Communications Letters, 2020, 24, 2569-2573.	2.5	8
24	Rheological Properties of ABA-Type Copolymers Physically End-Cross-Linked by Polyoxometalate. Macromolecules, 2020, 53, 10927-10941.	2.2	11
25	Tough and Multiâ€Recyclable Crossâ€Linked Supramolecular Polyureas via Incorporating Noncovalent Bonds into Mainâ€Chains. Advanced Materials, 2020, 32, e2000096.	11.1	174
26	Solution properties and electrospinning of polyacrylamide and ε-polylysine complexes. Polymer, 2020, 204, 122806.	1.8	9
27	Structure and phase behavior of poly(acrylic acid)–ferric ion complex aqueous solutions. Soft Matter, 2020, 16, 10750-10758.	1.2	2
28	Conformation of dilute poly(vinyl alcohol)-borax complex by asymmetric flow field-flow fractionation. Journal of Chromatography A, 2020, 1624, 461260.	1.8	3
29	Formation of fibrillar crystals strongly accelerates the form II to I transformation of polybutene-1. Soft Matter, 2020, 16, 4955-4960.	1.2	15
30	Extremely Tough, Puncture-Resistant, Transparent, and Photoluminescent Polyurethane Elastomers for Crack Self-Diagnose and Healing Tracking. ACS Applied Materials & Interfaces, 2020, 12, 30847-30855.	4.0	92
31	Using Coupling Motion of Connecting lons in Designing Telechelic Ionomers. ACS Macro Letters, 2020, 9, 917-923.	2.3	10
32	Thermorheological complexity of poly(vinyl alcohol)/borax aqueous solutions. Journal of Rheology, 2020, 64, 991-1002.	1.3	6
33	Relationship between Reaction Kinetics and Chain Dynamics of Vitrimers Based on Dioxaborolane Metathesis. Macromolecules, 2020, 53, 1180-1190.	2.2	51
34	Amyloid–Polyphenol Hybrid Nanofilaments Mitigate Colitis and Regulate Gut Microbial Dysbiosis. ACS Nano, 2020, 14, 2760-2776.	7.3	94
35	Shear-Induced Oriented Crystallization for Isotactic Poly(1-butene) and Its Copolymer with Ethylene. Macromolecules, 2020, 53, 3071-3081.	2.2	10
36	Design of a Low Earth Orbit Satellite Constellation Network for Air Traffic Surveillance. Journal of Navigation, 2020, 73, 1263-1283.	1.0	5

#	Article	IF	CITATIONS
37	A facile approach to fabricate composite anion exchange membranes with enhanced ionic conductivity and dimensional stability for electrodialysis. Separation and Purification Technology, 2019, 227, 115725.	3.9	15
38	Reversible Gelation of Entangled Ionomers. Macromolecules, 2019, 52, 8771-8780.	2.2	19
39	Intelligent Quality of Service Routing in Software-Defined Satellite Networking. IEEE Access, 2019, 7, 155281-155298.	2.6	3
40	High internal phase emulsions stabilized with amyloid fibrils and their polysaccharide complexes for encapsulation and protection of β-carotene. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110459.	2.5	48
41	Effects of alkyl group size on the structure and dynamics of poly(<i>n</i> -alkyl methacrylate)-based ionomers. Journal of Rheology, 2019, 63, 977-990.	1.3	14
42	Associative behavior of polyimide/cyclohexanone solutions. RSC Advances, 2019, 9, 27455-27463.	1.7	5
43	Dynamic topology control in optical satellite networks based on algebraic connectivity. Acta Astronautica, 2019, 165, 287-297.	1.7	9
44	High loading contents, distribution and stability of β-carotene encapsulated in high internal phase emulsions. Food Hydrocolloids, 2019, 96, 300-309.	5.6	60
45	A distributed congestion avoidance routing algorithm in mega-constellation network with multi-gateway. Acta Astronautica, 2019, 162, 376-387.	1.7	31
46	Multiscale Self-Assembly of Mobile-Ligand Molecular Nanoparticles for Hierarchical Nanocomposites. ACS Nano, 2019, 13, 7135-7145.	7.3	37
47	Ultrasmall Nanoparticles Diluted Chain Entanglement in Polymer Nanocomposites. Chinese Journal of Polymer Science (English Edition), 2019, 37, 797-805.	2.0	17
48	Linear viscoelasticity of poly(acrylic acid) complexed with ferric ion. Rheologica Acta, 2019, 58, 513-523.	1.1	12
49	Dynamics of Telechelic Ionomers with Distribution of Number of Ionic Stickers at Chain Ends. Macromolecules, 2019, 52, 2265-2276.	2.2	31
50	Dynamics in Miscible Polymer Blends and Associative Polymers. Nihon Reoroji Gakkaishi, 2019, 47, 197-205.	0.2	3
51	Combâ€shaped diblock copolystyrene for anion exchange membranes. Journal of Applied Polymer Science, 2019, 136, 47370.	1.3	12
52	Synthesis of a Macroporous Conjugated Polymer Framework: Iron Doping for Highly Stable, Highly Efficient Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 3087-3097.	4.0	52
53	Entanglement relaxation of poly(1-butene) and its copolymer with ethylene detected in conventional shear rheometer and quartz resonator. Journal of Rheology, 2019, 63, 167-177.	1.3	17
54	Adsorption of poly(vinyl alcohol) on gel permeation chromatography columns depends on the degree of hydrolysis. Journal of Chromatography A, 2019, 1585, 138-143.	1.8	12

#	Article	IF	CITATIONS
55	Novel anion exchange membranes based on quaternized diblock copolystyrene containing a fluorinated hydrophobic block. Journal of Membrane Science, 2018, 554, 264-273.	4.1	67
56	Associating behavior of one polyimide with high molecular weight in solution through a relatively weak interaction. Polymer, 2018, 141, 166-174.	1.8	9
57	Stability of flow-induced precursors in poly-1-butene and copolymer of 1-butene and ethylene. Journal of Rheology, 2018, 62, 725-737.	1.3	14
58	Determining electrospun morphology from the properties of protein–polymer solutions. Soft Matter, 2018, 14, 3455-3462.	1.2	18
59	Dynamics of associative polymers. Soft Matter, 2018, 14, 2961-2977.	1.2	184
60	Random binary brush architecture enhances both ionic conductivity and mechanical strength at room temperature. Chinese Journal of Polymer Science (English Edition), 2018, 36, 78-84.	2.0	8
61	Form II to I transformation of polybutene-1 and copolymer of butene-1 and ethylene: A role of amorphous phase. Polymer, 2018, 149, 146-153.	1.8	20
62	The role of electrostatic repulsion in the gelation of poly(vinyl alcohol)/borax aqueous solutions. Soft Matter, 2018, 14, 6767-6773.	1.2	19
63	Linear Viscoelasticity and Swelling of Polyelectrolyte Complex Coacervates. Macromolecules, 2018, 51, 5547-5555.	2.2	62
64	Directed Self-Assembly of High χ Poly(styrene-b-(lactic acid-alt-glycolic acid)) Block Copolymers on Chemical Patterns via Thermal Annealing. ACS Macro Letters, 2018, 7, 751-756.	2.3	22
65	Molecular Design of Highly Stretchable Ionomers. Macromolecules, 2018, 51, 4735-4746.	2.2	38
66	Morphological Evolution of Ionomer/Plasticizer Mixtures during a Transition from Ionomer to Polyelectrolyte. Macromolecules, 2017, 50, 963-971.	2.2	25
67	Facile preparation of biocompatible polymer microgels with tunable properties and unique functions to solely stabilize high internal phase emulsions. Chemical Engineering Journal, 2017, 315, 500-508.	6.6	36
68	Synthesis and properties of quaternized polyolefins with bulky poly(4-phenyl-1-butene) moieties as anion exchange membranes. Journal of Membrane Science, 2017, 541, 244-252.	4.1	43
69	Inorganicâ€Macroionâ€induced Formation of Bicontinuous Block Copolymer Nanocomposites with Enhanced Conductivity and Modulus. Angewandte Chemie, 2017, 129, 9141-9145.	1.6	18
70	Inorganicâ€Macroionâ€Induced Formation of Bicontinuous Block Copolymer Nanocomposites with Enhanced Conductivity and Modulus. Angewandte Chemie - International Edition, 2017, 56, 9013-9017.	7.2	89
71	Synthesis of midblock-quaternized triblock copolystyrenes as highly conductive and alkaline-stable anion-exchange membranes. Polymer Chemistry, 2017, 8, 2074-2086.	1.9	51
72	Rheological Behavior of Partially Neutralized Oligomeric Sulfonated Polystyrene Ionomers. Macromolecules, 2017, 50, 424-431.	2.2	17

#	Article	IF	CITATIONS
73	Association energy in strongly associative polymers. Journal of Rheology, 2017, 61, 1199-1207.	1.3	76
74	Nonlinear shear and uniaxial extensional rheology of polyether-ester-sulfonate copolymer ionomer melts. Journal of Rheology, 2017, 61, 1279-1289.	1.3	46
75	Diffusive Flux as a New Metric for Ion-Conducting Soft Materials. ACS Energy Letters, 2016, 1, 1179-1183.	8.8	15
76	The diffusion and conduction of lithium in poly(ethylene oxide)-based sulfonate ionomers. Journal of Chemical Physics, 2016, 145, 114903.	1.2	17
77	Viscoelasticity of entangled random polystyrene ionomers. Journal of Rheology, 2016, 60, 1031-1040.	1.3	70
78	Reversible Gelation Model Predictions of the Linear Viscoelasticity of Oligomeric Sulfonated Polystyrene Ionomer Blends. Macromolecules, 2016, 49, 3936-3947.	2.2	35
79	Facilitating Anion Transport in Polyolefin-Based Anion Exchange Membranes via Bulky Side Chains. ACS Applied Materials & Interfaces, 2016, 8, 23321-23330.	4.0	91
80	Brittle fracture in associative polymers: the case of ionomer melts. Soft Matter, 2016, 12, 7606-7612.	1.2	34
81	Linear Viscoelastic and Dielectric Properties of Strongly Hydrogen-Bonded Polymers near the Sol–Gel Transition. Macromolecules, 2016, 49, 9192-9202.	2.2	41
82	Nonlinear Rheology of Random Sulfonated Polystyrene Ionomers: The Role of the Sol–Gel Transition. Macromolecules, 2016, 49, 9203-9214.	2.2	34
83	Electrostatic tuning of block copolymer morphologies by inorganic macroions. Polymer, 2016, 106, 53-61.	1.8	12
84	Photoluminescence properties of Tb3+-doped stalk-like Al2O3. International Journal of Materials Research, 2016, 107, 280-282.	0.1	2
85	Segmental Dynamics of Ethylene Oxide-Containing Polymers with Diverse Backbone Chemistries. Macromolecules, 2016, 49, 1903-1910.	2.2	13
86	Controlled functionalization of poly(4-methyl-1-pentene) films for high energy storage applications. Journal of Materials Chemistry A, 2016, 4, 4797-4807.	5.2	58
87	Segmental Dynamics and Dielectric Constant of Polysiloxane Polar Copolymers as Plasticizers for Polymer Electrolytes. ACS Applied Materials & amp; Interfaces, 2016, 8, 3215-3225.	4.0	73
88	Constitutive modeling and experimental validation of the thermo-mechanical response of a shape memory composite containing shape memory alloy fibers and shape memory polymer matrix. Journal of Intelligent Material Systems and Structures, 2016, 27, 625-641.	1.4	24
89	Viscoelasticity of Reversible Gelation for Ionomers. Macromolecules, 2015, 48, 1221-1230.	2.2	123
90	Mechanical Reinforcement of Polymer Nanocomposites from Percolation of a Nanoparticle Network. ACS Macro Letters, 2015, 4, 398-402.	2.3	189

#	Article	IF	CITATIONS
91	Plasticizing Li single-ion conductors with low-volatility siloxane copolymers and oligomers containing ethylene oxide and cyclic carbonates. Journal of Materials Chemistry A, 2015, 3, 21269-21276.	5.2	24
92	Linear Viscoelasticity and Dielectric Spectroscopy of Ionomer/Plasticizer Mixtures: A Transition from Ionomer to Polyelectrolyte. Macromolecules, 2015, 48, 8240-8252.	2.2	49
93	High Ion Content Siloxane Phosphonium Ionomers with Very Low <i>T</i> _g . Macromolecules, 2014, 47, 4428-4437.	2.2	48
94	Segmental Dynamics of Polymer Melts with Spherical Nanoparticles. ACS Macro Letters, 2014, 3, 773-777.	2.3	128
95	Linear viscoelasticity of sulfonated styrene oligomers near the sol-gel transition. Korea Australia Rheology Journal, 2014, 26, 257-261.	0.7	19
96	Linear Viscoelasticity and Fourier Transform Infrared Spectroscopy of Polyether–Ester–Sulfonate Copolymer Ionomers. Macromolecules, 2014, 47, 3635-3644.	2.2	47
97	Linear viscoelasticity of unentangled corona blocks and star arms. Rheologica Acta, 2014, 53, 701-714.	1.1	3
98	Ionomer dynamics and the sticky Rouse model. Journal of Rheology, 2013, 57, 1441-1462.	1.3	197
99	Linear Viscoelastic and Dielectric Properties of Phosphonium Siloxane Ionomers. ACS Macro Letters, 2013, 2, 970-974.	2.3	63
100	Effect of Various Dissolution Systems on the Molecular Weight of Regenerated Silk Fibroin. Biomacromolecules, 2013, 14, 285-289.	2.6	120
101	Dynamics in miscible blends of polyisoprene and poly(p-tert-butyl styrene): thermo–rheological behavior of components. Polymer Journal, 2012, 44, 102-114.	1.3	6
102	Dielectric behavior of Styrene–Isoprene (SI) Diblock and SIIS Triblock Copolymers: Global Dynamics of I Blocks in Spherical and Cylindrical Domains Embedded in Glassy S Matrix. Macromolecules, 2012, 45, 7050-7060.	2.2	12
103	Dielectric Behavior of Guest <i>cis</i> -Polyisoprene Confined in Spherical Microdomain of Triblock Copolymer Macromolecules, 2012, 45, 2809-2819.	2.2	14
104	Conformational evolution under steady shear flow: a comparison between cyclic and linear block copolymers. Rheologica Acta, 2012, 51, 343-355.	1.1	3
105	Creep dynamics of non-entangled miscible polymer blends and block copolymers. Rheologica Acta, 2012, 51, 569-577.	1.1	2
106	Entanglement Dynamics in Miscible Polyisoprene/Poly(<i>p</i> - <i>tert</i> -butylstyrene) Blends. Macromolecules, 2011, 44, 1570-1584.	2.2	27
107	Dynamics of Polyisoprene-Poly(<i>p</i> - <i>tert</i> -butylstyrene) Diblock Copolymer in Disordered State. Macromolecules, 2011, 44, 1585-1602.	2.2	13
108	Viscoelastic Mode Distribution of Moderately Entangled Linear Polymers. Nihon Reoroji Gakkaishi, 2011, 38, 187-193.	0.2	15

#	Article	IF	CITATIONS
109	Rheological properties of immiscible polymer blends under parallel superposition shear flow. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 431-440.	2.4	17
110	Transient stresses and morphology of immiscible polymer blends under varying shear flow. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 326, 175-183.	2.3	7
111	Component Dynamics in Polyisoprene/Poly(4- <i>tert</i> -butylstyrene) Miscible Blends. Macromolecules, 2008, 41, 8694-8711.	2.2	38