
David M Van Reyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6113232/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comparison of attitudes toward remote learning during the COVID-19 pandemic between students attending a Chinese and an Australian campus. American Journal of Physiology - Advances in Physiology Education, 2022, 46, 297-308.	0.8	5
2	Extracellular Matrix Oxidised by the Granulocyte Oxidants Hypochlorous and Hypobromous Acid Reduces Lung Fibroblast Adhesion and Proliferation In Vitro. Cells, 2021, 10, 3351.	1.8	1
3	Perceptions of Video Scenarios to Learn Human Pathophysiology Among Undergraduate Science Students. Journal of Science Education and Technology, 2020, 29, 597-604.	2.4	1
4	A pivotal role for NF-κB in the macrophage inflammatory response to the myeloperoxidase oxidant hypothiocyanous acid. Archives of Biochemistry and Biophysics, 2018, 642, 23-30.	1.4	14
5	Modulation of neural regulators of energy homeostasis, and of inflammation, in the pups of mice exposed to e-cigarettes. Neuroscience Letters, 2018, 684, 61-66.	1.0	38
6	Low-density lipoprotein modified by myeloperoxidase oxidants induces endothelial dysfunction. Redox Biology, 2017, 13, 623-632.	3.9	33
7	Evidence of Biomass Smoke Exposure as a Causative Factor for the Development of COPD. Toxics, 2017, 5, 36.	1.6	58
8	The use of simulation as a novel experiential learning module in undergraduate science pathophysiology education. American Journal of Physiology - Advances in Physiology Education, 2016, 40, 335-341.	0.8	17
9	The nitroxide radical TEMPOL prevents obesity, hyperlipidaemia, elevation of inflammatory cytokines, and modulates atherosclerotic plaque composition in apoEâ~'/â~' mice. Atherosclerosis, 2015, 240, 234-241.	0.4	42
10	Comparative reactivity of the myeloperoxidase-derived oxidants HOCl and HOSCN with low-density lipoprotein (LDL): Implications for foam cell formation in atherosclerosis. Archives of Biochemistry and Biophysics, 2015, 573, 40-51.	1.4	24
11	Short term exendinâ€4 treatment reduces markers of metabolic disorders in female offspring of obese rat dams. International Journal of Developmental Neuroscience, 2015, 46, 67-75.	0.7	9
12	Supplementation with carnosine decreases plasma triglycerides andÂmodulates atherosclerotic plaque composition in diabetic apoÂEâ~'/â~' mice. Atherosclerosis, 2014, 232, 403-409.	0.4	54
13	Inhibition of lysosomal function in macrophages incubated with elevated glucose concentrations: A potential contributory factor in diabetes-associated atherosclerosis. Atherosclerosis, 2012, 223, 144-151.	0.4	12
14	Effect of Exposure of Human Monocyte-Derived Macrophages to High, versus Normal, Glucose on Subsequent Lipid Accumulation from Glycated and Acetylated Low-Density Lipoproteins. Experimental Diabetes Research, 2011, 2011, 1-10.	3.8	11
15	Deleterious effects of reactive aldehydes and glycated proteins on macrophage proteasomal function: Possible links between diabetes and atherosclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 561-571.	1.8	37
16	Hypothiocyanous acid is a more potent inducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acid or hypobromous acid. Biochemical Journal, 2008, 414, 271-280.	1.7	76
17	Carnosine and its constituents inhibit glycation of low-density lipoproteins that promotes foam cell formation in vitro. FEBS Letters, 2007, 581, 1067-1070.	1.3	75
18	Glycation of low-density lipoprotein results in the time-dependent accumulation of cholesteryl esters and apolipoprotein B-100 protein in primary human monocyte-derived macrophages. FEBS Journal, 2007, 274, 1530-1541.	2.2	32

DAVID M VAN REYK

#	Article	IF	CITATIONS
19	Oxysterols in biological systems: sources, metabolism and pathophysiological relevance. Redox Report, 2006, 11, 255-262.	1.4	81
20	Human macrophages limit oxidation products in low density lipoprotein. Lipids in Health and Disease, 2005, 4, 6.	1.2	12
21	The retina: oxidative stress and diabetes. Redox Report, 2003, 8, 187-192.	1.4	85
22	The intracellular oxidation of 2′,7′-dichlorofluorescin in murine T lymphocytes. Free Radical Biology and Medicine, 2001, 30, 82-88.	1.3	45
23	Inhibition of in vitro lymphoproliferation by three novel iron chelators of the pyridoxal and salicyl aldehyde hydrazone classes. Biochemical Pharmacology, 2000, 60, 581-587.	2.0	17
24	Prooxidant and Antioxidant Activities of Macrophages in Metal-Mediated LDL Oxidation. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 1119-1124.	1.1	16
25	The macrophage in atherosclerosis: modulation of cell function by sterols. Journal of Leukocyte Biology, 1999, 66, 557-561.	1.5	29
26	Direct Copper Reduction by Macrophages. Journal of Biological Chemistry, 1997, 272, 6927-6935.	1.6	45
27	The Iron-Selective Chelator Desferal Can Reduce Chelated Copper. Free Radical Research, 1996, 24, 55-60.	1.5	16
28	Batch-To-Batch Variation of Chelex-100 Confounds Metal-Catalysed Oxidation. Leaching of Inhibitory Compounds from A Batch of Chelex-100 and Their Removal by a Pre-Washing Procedure. Free Radical Research, 1995, 23, 533-535.	1.5	32