Kwang Yong Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6112903/publications.pdf

Version: 2024-02-01

127 papers 4,568 citations

36 h-index 98798 67 g-index

128 all docs

128 docs citations

128 times ranked 2357 citing authors

#	Article	IF	CITATIONS
1	Distributed Ultraviolet Sensor Based on Brillouin Optical Correlation-Domain Analysis Using An Azobenzene Polymer-Coated Optical Fiber. Journal of Lightwave Technology, 2022, 40, 2657-2662.	4.6	O
2	Brillouin Optical Correlation Domain Analysis Using Orthogonally Polarized Probe Sidebands. Journal of Lightwave Technology, 2022, 40, 894-899.	4.6	5
3	Distributed Analysis on the Spatial Mode Structure in a PANDA-Type Few-Mode Fiber By Brillouin Dynamic Gratings. Journal of Lightwave Technology, 2021, 39, 612-619.	4.6	1
4	Directly Synthesized Graphene-Based Photonics and Optoelectronics Devices. Applied Sciences (Switzerland), 2021, 11, 2768.	2.5	4
5	Recent Progress in Distributed Brillouin Sensors Based on Few-Mode Optical Fibers. Sensors, 2021, 21, 2168.	3.8	3
6	Effects of Differential Measurement Scheme on Brillouin Optical Correlation-Domain Analysis. Journal of Lightwave Technology, 2021, 39, 2609-2617.	4.6	13
7	Brillouin Optical Correlation Domain Analysis Assisted by First-Order Distributed Raman Amplification. , 2021, , .		O
8	Optical frequency domain reflectometry based on Brillouin dynamic grating in polarization maintaining fiber., 2021,,.		0
9	Characterization of UV light sensors using Brillouin optical correlation domain analysis. , 2021, , .		O
10	Polarization-independent Brillouin optical correlation domain analysis based on orthogonal probe sidebands., 2021,,.		0
11	Dynamic In-Line Routing Between Distant Cores of a Multi-Core Fiber. Journal of Lightwave Technology, 2020, 38, 6076-6081.	4.6	1
12	Graphene Capacitor-Based Electrical Switching of Mode-Locking in All-Fiberized Femtosecond Lasers. ACS Applied Materials & Diterfaces, 2020, 12, 54005-54011.	8.0	14
13	High-Accuracy Distributed Bend Sensor Eligible for High-Curvature Structures Based on Brillouin Optical Correlation Domain Analysis. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-9.	2.9	2
14	50 km-Range Brillouin Optical Correlation Domain Analysis With First-Order Backward Distributed Raman Amplification. Journal of Lightwave Technology, 2020, 38, 5199-5204.	4.6	16
15	Atomic Carbon Spraying: Direct Growth of Graphene on Customized 3D Surfaces of Ultrafast Optical Devices. Advanced Optical Materials, 2020, 8, 1902091.	7.3	6
16	Brillouin dynamic gratings in few-mode PM fibers for distributed sensing. , 2020, , .		0
17	Suppression of Systematic Errors in Brillouin Optical Correlation Domain Analysis Based on Injection-Locking. Journal of Lightwave Technology, 2019, 37, 4421-4425.	4.6	23
18	Linearly Configured Brillouin Optical Correlation Domain Analysis System Incorporating Time-Domain Data Processing. Journal of Lightwave Technology, 2019, 37, 4728-4733.	4.6	3

#	Article	IF	Citations
19	50 km Range BOCDA Assisted by Raman Amplification. , 2019, , .		О
20	Brillouin optical correlation domain analysis using an injection-locked laser diode for distortion suppression. , 2019, , .		0
21	Characterization of Distributed Brillouin Sensors Based on Elliptical-Core Two-Mode Fiber. IEEE Sensors Journal, 2019, 19, 2155-2161.	4.7	4
22	Recent Advances in Blackâ€Phosphorusâ€Based Photonics and Optoelectronics Devices. Small Methods, 2018, 2, 1700315.	8.6	36
23	Ultrafast photonic devices based on nanomaterials. , 2018, , .		0
24	Long Range One-End Accessible BOCDA Adopting Time Domain Data Processing. , 2018, , .		0
25	Dual-Probe Linearly Configured BOCDA System With Enlarged Modulation Amplitude. Journal of Lightwave Technology, 2018, 36, 5203-5209.	4.6	3
26	The Rayleigh and Polarization Fading Elimination in Phase-Extracted OTDR. , $2018, \ldots$		1
27	Efficient Optical Saturable Absorbers with Graphene on Polymer Waveguides for Femtosecond Laser Pulse Formation. Annalen Der Physik, 2018, 530, 1800249.	2.4	6
28	Graphene-Incorporated Soft Capacitors for Mechanically Adjustable Electro-Optic Modulators. ACS Applied Materials & Interfaces, 2018, 10, 40781-40788.	8.0	9
29	Measurement error induced by the power-frequency delay of the light source in optical correlation-domain distributed Brillouin sensors. Optics Letters, 2018, 43, 5078.	3.3	15
30	Effects of asymmetric frequency modulation in optical correlation-domain distributed Brillouin sensors. , $2018, , .$		0
31	Linearly-configured BOCDA system with large modulation amplitude using dual-probe wave. , 2018, , .		0
32	Distributed measurement of the spatial mode structure in a PANDA two-mode fiber by Brillouin dynamic grating. , 2018 , , .		0
33	Enhanced Measurement Range of Single End Accessible Brillouin Optical Correlation Domain Analysis Incorporating Time-Domain Data Processing. , 2018, , .		1
34	Nonlinear Black Phosphorus for Ultrafast Optical Switching. Scientific Reports, 2017, 7, 43371.	3.3	45
35	OTDR based on Brillouin dynamic grating in an e-core two-mode fiber for simultaneous measurement of strain and temperature distribution. Proceedings of SPIE, 2017, , .	0.8	0
36	BOCDA system enhanced by concurrent interrogation of multiple correlation peaks with a 10-km sensing range. Proceedings of SPIE, 2017, , .	0.8	1

#	Article	IF	Citations
37	Brillouin Optical Correlation Domain Analysis Enhanced by Time-Domain Data Processing for Concurrent Interrogation of Multiple Sensing Points. Journal of Lightwave Technology, 2017, 35, 5311-5316.	4.6	30
38	Oxygenâ€Dependent Synthesis of Graphene on γâ€Alumina Catalyst. Advanced Materials Interfaces, 2017, 4, 1700603.	3.7	6
39	Applications of Brillouin Dynamic Grating to Distributed Fiber Sensors. Journal of Lightwave Technology, 2017, 35, 3268-3280.	4.6	37
40	A BOCDA system using time-domain data processing for an enlarged measurement range to $10\mathrm{km}$., 2017 ,		0
41	Optical time-domain reflectometry based on a Brillouin dynamic grating in an elliptical-core two-mode fiber. Optics Letters, 2017, 42, 3036.	3.3	11
42	Tailored pump compensation for Brillouin optical time-domain analysis with distributed Brillouin amplification. Optics Express, 2017, 25, 14098.	3.4	18
43	Optimized pump compensation of a BOTDA system with distributed Brillouin amplification., 2017,,.		0
44	Distributed measurement of hydrostatic pressure based on Brillouin dynamic grating in polarization maintaining fibers. Optics Express, 2016, 24, 21399.	3.4	41
45	Ultrahigh-speed distributed Brillouin reflectometry. Light: Science and Applications, 2016, 5, e16184-e16184.	16.6	166
46	Broadband mode division multiplexer using all-fiber mode selective couplers. Optics Express, 2016, 24, 3543.	3.4	99
47	Brillouin optical correlation domain analysis system for simultaneous interrogation of $150\mathrm{sensing}$ positions. , $2016,$, .		2
48	Centro-Apical Self-Organization of Organic Semiconductors in a Line-Printed Organic Semiconductor: Polymer Blend for One-Step Printing Fabrication of Organic Field-Effect Transistors. Scientific Reports, 2015, 5, 14010.	3.3	21
49	Black phosphorus saturable absorber for ultrafast mode″ocked pulse laser via evanescent field interaction. Annalen Der Physik, 2015, 527, 770-776.	2.4	115
50	Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement. Optics Express, 2015, 23, 33241.	3.4	59
51	Simplified BOTDA System Based on Direct Modulation of a Laser Diode With an Extended Measurement Range. Journal of Lightwave Technology, 2015, 33, 1979-1984.	4.6	4
52	Characterization of Nonlinear Temperature Dependence of Brillouin Dynamic Grating Spectra in Polarization-Maintaining Fibers. Journal of Lightwave Technology, 2015, 33, 4922-4927.	4.6	29
53	Temperature and strain dependence of the Brillouin frequencies in tapered optical fibers. Proceedings of SPIE, 2015, , .	0.8	0
54	Characterization of temperature-dependent birefringence in polarization maintaining fibers based on Brillouin dynamic gratings. , 2015 , , .		1

#	Article	IF	CITATIONS
55	Growth, Quantitative Growth Analysis and Applications of Graphene on \hat{I}^3 -Al2O3 catalysts. Scientific Reports, 2015, 5, 11839.	3.3	24
56	In Situ Synthesis of Graphene with Telecommunication Lasers for Nonlinear Optical Devices. Advanced Optical Materials, 2015, 3, 1264-1272.	7.3	18
57	Nonvolatile Ferroelectric Memory Circuit Using Black Phosphorus Nanosheet-Based Field-Effect Transistors with P(VDF-TrFE) Polymer. ACS Nano, 2015, 9, 10394-10401.	14.6	130
58	Brillouin optical correlation domain analysis with more than 1 million effective sensing points. Proceedings of SPIE, 2015, , .	0.8	0
59	Distributed fiber sensors based on Brillouin dynamic gratings. , 2014, , .		0
60	All-Fiber Mode Division Multiplexer optimized for C-band. , 2014, , .		13
61	Linearly configured BOCDA system using a differential measurement scheme. Optics Express, 2014, 22, 1467.	3.4	25
62	Mapping of intermodal beat length distribution in an elliptical-core two-mode fiber based on Brillouin dynamic grating. Optics Express, 2014, 22, 17292.	3.4	38
63	Acousto-optic resonant coupling of three spatial modes in an optical fiber. Optics Express, 2014, 22, 1990.	3.4	8
64	Distributed measurement of intermodal beat length in an elliptic-core two-mode fiber by Brillouin dynamic grating. , 2014 , , .		0
65	High-performance in-line Brillouin optical correlation domain analysis. , 2014, , .		0
66	Extension of measurement range in Brillouin optical correlation domain analysis by pump-probe switching. Applied Physics B: Lasers and Optics, 2014, 116, 91-96.	2.2	2
67	Acoustooptic Generation and Characterization of the Higher Order Modes in a Four-Mode Fiber for Mode-Division Multiplexed Transmission. Journal of Lightwave Technology, 2014, 32, 4534-4538.	4.6	9
68	Measurement of Intramodal and Intermodal Brillouin Gain Spectra in a Few-mode Fiber., 2014,,.		1
69	Intermodal stimulated Brillouin scattering in two-mode fibers. Optics Letters, 2013, 38, 1805.	3.3	48
70	Characterization of stimulated Brillouin scattering in a few-mode fiber. Optics Letters, 2013, 38, 4841.	3.3	47
71	High-sensitivity Distributed Fiber Sensors Based on Brillouin Dynamic Gratings. , 2013, , .		1
72	Bidirectional Brillouin Optical Correlation Domain Analysis Using Phase Modulation. , 2013, , .		0

#	Article	IF	CITATIONS
73	Intermodal stimulated Brillouin scattering in two-mode fibers. , 2013, , .		О
74	High-sensitivity optical time-domain reflectometry based on Brillouin dynamic gratings in polarization maintaining fibers. Optics Express, 2012, 20, 27377.	3.4	27
75	Effects of induced birefringence on Brillouin dynamic gratings in single-mode optical fibers. Optics Letters, 2012, 37, 2229.	3.3	13
76	Differential measurement scheme for Brillouin Optical Correlation Domain Analysis. Optics Express, 2012, 20, 27094.	3.4	71
77	Bidirectional measurement for Brillouin optical correlation domain analysis. Optics Express, 2012, 20, 11091.	3.4	15
78	High sensitivity optical time-domain reflectometry based on Brillouin dynamic grating in polarization maintaining fiber. Proceedings of SPIE, 2012 , , .	0.8	0
79	Brillouin dynamic grating in optical fibers. , 2012, , .		0
80	Novel measurement method of Brillouin optical correlation domain analysis based on bidirectional detection scheme. , $2012, \ldots$		1
81	Variable-frequency lock-in detection for the suppression of beat noise in Brillouin optical correlation domain analysis. Optics Express, 2011, 19, 18721.	3.4	17
82	High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation. Optics Letters, 2011, 36, 2062.	3.3	93
83	Operation of Brillouin dynamic grating in single-mode optical fibers. Optics Letters, 2011, 36, 4686.	3.3	59
84	High-repetition-rate distributed Brillouin sensor by correlation domain analysis with differential frequency modulation. , $2011, \ldots$		0
85	Ultra wide range tunable delay line using dynamic grating reflectors in optical fibers. , 2010, , .		6
86	Crack Propagation Monitoring of DCB Composite Specimens Using Distributed Optical Fiber Sensor. Materials Science Forum, 2010, 654-656, 2592-2595.	0.3	2
87	Simplified Brillouin optical time-domain sensor based on direct modulation of a laser diode. Optics Express, 2010, 18, 24012.	3.4	19
88	High-resolution Brillouin optical time domain analysis based on Brillouin dynamic grating. Optics Letters, 2010, 35, 52.	3.3	56
89	Observation of narrowband intrinsic spectra of Brillouin dynamic gratings. Optics Letters, 2010, 35, 2958.	3.3	60
90	Time-Domain Distributed Fiber Sensor With 1 cm Spatial Resolution Based on Brillouin Dynamic Grating. Journal of Lightwave Technology, 2010, 28, 2062-2067.	4.6	116

#	Article	IF	CITATIONS
91	True time reversal via dynamic Brillouin gratings in polarization maintaining fibers. , 2010, , .		6
92	Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber. Optics Letters, 2009, 34, 1381.	3.3	86
93	Tunable optical delays based on Brillouin dynamic grating in optical fibers. Optics Express, 2009, 17, 10344.	3.4	70
94	Progress in the slow and fast light based on Brillouin scattering in optical fibers. , 2009, , .		0
95	Optical Time-Domain Measurement of Brillouin Dynamic Grating Spectrum in a Polarization Maintaining Fiber., 2009,,.		0
96	Brillouin Dynamic Grating in Optical Fibers and its Applications. , 2009, , .		0
97	All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber. Optics Letters, 2008, 33, 926.	3.3	230
98	Gain-assisted superluminal propagation in tellurite glass fiber based on stimulated Brillouin scattering. Optics Express, 2008, 16, 225.	3.4	34
99	Effects of Brillouin slow light on intensity-modulated waveforms in optical fibers. Optics Express, 2008, 16, 17451.	3.4	2
100	Range-Enlargement of Simplified Brillouin Optical Correlation Domain Analysis Based on a Temporal Gating Scheme. SICE Journal of Control Measurement and System Integration, 2008, 1, 271-274.	0.7	51
101	Simplified Brillouin Optical Correlation Domain Analysis System with Optimized Time-Gating Scheme. , 2007, , .		1
102	All-Fiber Passive Mode-Lockers Using Attachable Vertically Aligned Carbon Nanotube Film. , 2007, , .		0
103	Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers. Optics Letters, 2007, 32, 148.	3.3	238
104	25 GHz bandwidth Brillouin slow light in optical fibers. Optics Letters, 2007, 32, 217.	3.3	124
105	Passively mode-locked lasers with 172-GHz fundamental-mode repetition rate pulsed by carbon nanotubes. Optics Letters, 2007, 32, 430.	3.3	74
106	All-fiber pulsed lasers passively mode locked by transferable vertically aligned carbon nanotube film. Optics Letters, 2007, 32, 1399.	3.3	48
107	Preparation and Application of Sol-Gel Glass Incorporating Single-Walled Carbon Nanotubes. , 2007, , .		0
108	Distributed Fiber Strain Sensor With 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis. IEEE Photonics Technology Letters, 2007, 19, 1928-1930.	2.5	91

#	Article	IF	Citations
109	Suppression of Signal Fluctuation in Brillouin Optical Correlation Domain Analysis System Using Polarization Diversity Scheme. IEEE Photonics Technology Letters, 2006, 18, 2653-2655.	2.5	48
110	Time biasing due to the slow-light effect in distributed fiber-optic Brillouin sensors. Optics Letters, 2006, 31, 715.	3.3	13
111	Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis. Optics Letters, 2006, 31, 2526.	3.3	304
112	Arbitrary-bandwidth Brillouin slow light in optical fibers. Optics Express, 2006, 14, 1395.	3.4	273
113	Optimization of Brillouin optical correlation domain analysis system based on intensity modulation scheme. Optics Express, 2006, 14, 4256.	3.4	42
114	Highly efficient Brillouin slow and fast light using As2Se3chalcogenide fiber. Optics Express, 2006, 14, 5860.	3.4	113
115	Brillouin optical correlation domain analysis system with kilometer measurement range based on intensity modulation scheme. , 2006, , .		0
116	Ultrashort-cavity passively mode-locked fiber lasers using carbon nanotubes. , 2006, , .		1
117	Highly efficient fused-type core-cladding mode coupler. , 2005, , .		0
118	Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Optics Express, 2005, 13, 82.	3.4	519
119	Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers. Optics Express, 2005, 13, 9758.	3.4	76
120	Long optically controlled delays in optical fibers. Optics Letters, 2005, 30, 1782.	3.3	130
121	1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes. IEEE Photonics Technology Letters, 2005, 17, 1623-1625.	2.5	60
122	Fused bitapered single-mode fiber directional coupler for core and cladding mode coupling. IEEE Photonics Technology Letters, 2005, 17, 2631-2633.	2.5	6
123	Broad-band LPO2 mode excitation using a fused-type mode-selective coupler. IEEE Photonics Technology Letters, 2003, 15, 1734-1736.	2.5	19
124	All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers. Journal of Lightwave Technology, 2002, 20, 1864-1868.	4.6	42
125	High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550 nm. IEEE Photonics Technology Letters, 2002, 14, 501-503.	2.5	87
126	High performance fused-type mode selective coupler for two-mode fiber devices. , 0, , .		4

ARTICLE IF CITATIONS

127 All-fiber wavelength-tunable acousto-optic switch., 0,,... 6