Chia-Shuo Hsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6112756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atomically dispersed Fe ³⁺ sites catalyze efficient CO ₂ electroreduction to CO. Science, 2019, 364, 1091-1094.	6.0	1,164
2	Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Species as a Key Intermediate and Dioxygen Release as a Rate-Determining Step. Journal of the American Chemical Society, 2020, 142, 11901-11914.	6.6	452
3	A Cobalt–Iron Double-Atom Catalyst for the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2019, 141, 14190-14199.	6.6	401
4	Operando Unraveling of the Structural and Chemical Stability of P-Substituted CoSe ₂ Electrocatalysts toward Hydrogen and Oxygen Evolution Reactions in Alkaline Electrolyte. ACS Energy Letters, 2019, 4, 987-994.	8.8	363
5	An Unconventional Iron Nickel Catalyst for the Oxygen Evolution Reaction. ACS Central Science, 2019, 5, 558-568.	5.3	263
6	Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction. Nature Communications, 2020, 11, 3525.	5.8	242
7	Ni ₃ N as an Active Hydrogen Oxidation Reaction Catalyst in Alkaline Medium. Angewandte Chemie - International Edition, 2019, 58, 7445-7449.	7.2	217
8	Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nature Energy, 2021, 6, 1054-1066.	19.8	159
9	Unraveling Geometrical Site Confinement in Highly Efficient Ironâ€Doped Electrocatalysts toward Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1701686.	10.2	125
10	Edgeless Ag–Pt Bimetallic Nanocages: In Situ Monitor Plasmon-Induced Suppression of Hydrogen Peroxide Formation. Journal of the American Chemical Society, 2017, 139, 2224-2233.	6.6	111
11	Morphology Manipulation of Copper Nanocrystals and Product Selectivity in the Electrocatalytic Reduction of Carbon Dioxide. ACS Catalysis, 2019, 9, 5217-5222.	5.5	105
12	Identification of Stabilizing High-Valent Active Sites by Operando High-Energy Resolution Fluorescence-Detected X-ray Absorption Spectroscopy for High-Efficiency Water Oxidation. Journal of the American Chemical Society, 2018, 140, 17263-17270.	6.6	92
13	Valence- and element-dependent water oxidation behaviors: in situ X-ray diffraction, absorption and electrochemical impedance spectroscopies. Physical Chemistry Chemical Physics, 2017, 19, 8681-8693.	1.3	80
14	Harnessing Dielectric Confinement on Tin Perovskites to Achieve Emission Quantum Yield up to 21%. Journal of the American Chemical Society, 2019, 141, 10324-10330.	6.6	76
15	In Situ Spatially Coherent Identification of Phosphide-Based Catalysts: Crystallographic Latching for Highly Efficient Overall Water Electrolysis. ACS Energy Letters, 2019, 4, 2813-2820.	8.8	75
16	Quantitatively Unraveling the Redox Shuttle of Spontaneous Oxidation/Electroreduction of CuO _{<i>x</i>} on Silver Nanowires Using in Situ X-ray Absorption Spectroscopy. ACS Central Science, 2019, 5, 1998-2009.	5.3	74
17	Product-Specific Active Site Motifs of Cu for Electrochemical CO2 Reduction. CheM, 2021, 7, 406-420.	5.8	72
18	The synergistic effect of a well-defined Au@Pt core–shell nanostructure toward photocatalytic hydrogen generation: interface engineering to improve the Schottky barrier and hydrogen-evolved kinetics. Chemical Communications, 2016, 52, 1567-1570.	2.2	52

Сніа-Shuo Hsu

#	Article	IF	CITATIONS
19	Strongly Coupled Tinâ€Halide Perovskites to Modulate Light Emission: Tunable 550–640 nm Light Emission (FWHM 36–80 nm) with a Quantum Yield of up to 6.4%. Advanced Materials, 2018, 30, e1706592.	11.1	51
20	In Situ Identifying the Dynamic Structure behind Activity of Atomically Dispersed Platinum Catalyst toward Hydrogen Evolution Reaction. Small, 2021, 17, e2005713.	5.2	38
21	Chemical distinctions between Stradivari's maple and modern tonewood. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 27-32.	3.3	36
22	Lightâ€Induced Activation of Adaptive Junction for Efficient Solarâ€Driven Oxygen Evolution: In Situ Unraveling the Interfacial Metal–Silicon Junction. Advanced Energy Materials, 2019, 9, 1901308.	10.2	27
23	A Universal Approach for Controllable Synthesis of <i>n</i> â€Specific Layered 2D Perovskite Nanoplates. Angewandte Chemie - International Edition, 2021, 60, 7866-7872.	7.2	24
24	In Situ Creation of Surface-Enhanced Raman Scattering Active Au–AuO <i>_x</i> Nanostructures through Electrochemical Process for Pigment Detection. ACS Omega, 2018, 3, 16576-16584.	1.6	15
25	Electronic structure inspired a highly robust electrocatalyst for the oxygen-evolution reaction. Chemical Communications, 2020, 56, 8071-8074.	2.2	15
26	The individual role of active sites in bimetallic oxygen evolution reaction catalysts. Dalton Transactions, 2020, 49, 17505-17510.	1.6	13
27	Materials Engineering of Violin Soundboards by Stradivari and Guarneri. Angewandte Chemie - International Edition, 2021, 60, 19144-19154.	7.2	11
28	Comprehensively Probing the Contribution of Site Activity and Population of Active Sites toward Heterogeneous Electrocatalysis. ChemCatChem, 2020, 12, 1926-1933.	1.8	7
29	A Universal Approach for Controllable Synthesis of n â€Specific Layered 2D Perovskite Nanoplates. Angewandte Chemie, 2021, 133, 7945-7951.	1.6	6
30	Materials Engineering of Violin Soundboards by Stradivari and Guarneri. Angewandte Chemie, 2021, 133, 19293-19303.	1.6	6
31	Electrocatalysts: Unraveling Geometrical Site Confinement in Highly Efficient Ironâ€Doped Electrocatalysts toward Oxygen Evolution Reaction (Adv. Energy Mater. 7/2018). Advanced Energy Materials, 2018, 8, 1870032.	10.2	5
32	<i>In situ</i> probing the dynamic reconstruction of copper–zinc electrocatalysts for CO ₂ reduction. Nanoscale, 2022, 14, 8944-8950.	2.8	5
33	Photocatalysis: Lightâ€Induced Activation of Adaptive Junction for Efficient Solarâ€Driven Oxygen Evolution: In Situ Unraveling the Interfacial Metal–Silicon Junction (Adv. Energy Mater. 31/2019). Advanced Energy Materials, 2019, 9, 1970122.	10.2	4
34	Tracking the <i>in situ</i> generation of hetero-metal–metal bonds in phosphide electrocatalysts for electrocatalytic hydrogen evolution. Catalysis Science and Technology, 2022, 12, 3234-3239.	2.1	3
35	Ï€â€Conjugated Organic–Inorganic Hybrid Photoanodes: Revealing the Photochemical Behavior through In Situ Xâ€Ray Absorption Spectroscopy. Chemistry - A European Journal, 2018, 24, 18419-18423.	1.7	1
36	Dualâ€Hole Excitons Activated Photoelectrolysis in Neutral Solution. Small, 2018, 14, e1704047.	5.2	0

#	Article	IF	CITATIONS
37	Nanomaterials: Dual-Hole Excitons Activated Photoelectrolysis in Neutral Solution (Small 14/2018). Small, 2018, 14, 1870061.	5.2	0
38	Frontispiece: Materials Engineering of Violin Soundboards by Stradivari and Guarneri. Angewandte Chemie - International Edition, 2021, 60, .	7.2	0
39	Frontispiz: Materials Engineering of Violin Soundboards by Stradivari and Guarneri. Angewandte Chemie, 2021, 133, .	1.6	0