Markus Ploner

List of Publications by Citations

Source: https://exaly.com/author-pdf/6112703/markus-ploner-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

73
papers

5,121
citations

87
ext. papers

6,060
ext. citations

32
h-index

71
g-index

5.62
L-index

#	Paper	IF	Citations
73	The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil. <i>Science Translational Medicine</i> , 2011 , 3, 70ra14	17.5	490
72	Neurocognitive aspects of pain perception. <i>Trends in Cognitive Sciences</i> , 2008 , 12, 306-13	14	467
71	Anterior insula integrates information about salience into perceptual decisions about pain. <i>Journal of Neuroscience</i> , 2010 , 30, 16324-31	6.6	315
70	Neurophysiology and functional neuroanatomy of pain perception. <i>Journal of Clinical Neurophysiology</i> , 2000 , 17, 592-603	2.2	245
69	Gamma oscillations in human primary somatosensory cortex reflect pain perception. <i>PLoS Biology</i> , 2007 , 5, e133	9.7	243
68	Parallel activation of primary and secondary somatosensory cortices in human pain processing. Journal of Neurophysiology, 1999 , 81, 3100-4	3.2	229
67	Prestimulus functional connectivity determines pain perception in humans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 355-60	11.5	222
66	Differential coding of pain intensity in the human primary and secondary somatosensory cortex. Journal of Neurophysiology, 2001 , 86, 1499-503	3.2	206
65	Cortical representation of first and second pain sensation in humans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 12444-8	11.5	174
64	Brain Rhythms of Pain. <i>Trends in Cognitive Sciences</i> , 2017 , 21, 100-110	14	165
63	Differential organization of touch and pain in human primary somatosensory cortex. <i>Journal of Neurophysiology</i> , 2000 , 83, 1770-6	3.2	160
62	Pain affect without pain sensation in a patient with a postcentral lesion. <i>Pain</i> , 1999 , 81, 211-4	8	149
61	Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations. <i>Nature Reviews Neurology</i> , 2017 , 13, 624-638	15	147
60	Decoding the perception of pain from fMRI using multivariate pattern analysis. <i>NeuroImage</i> , 2012 , 63, 1162-70	7.9	146
59	Prefrontal Gamma Oscillations Encode Tonic Pain in Humans. <i>Cerebral Cortex</i> , 2015 , 25, 4407-14	5.1	129
58	Frontostriatal Gating of Tinnitus and Chronic Pain. <i>Trends in Cognitive Sciences</i> , 2015 , 19, 567-578	14	121
57	Pain suppresses spontaneous brain rhythms. <i>Cerebral Cortex</i> , 2006 , 16, 537-40	5.1	119

(2004-2012)

56	Decoding an individual sensitivity to pain from the multivariate analysis of EEG data. <i>Cerebral Cortex</i> , 2012 , 22, 1118-23	5.1	118
55	Amygdala activity contributes to the dissociative effect of cannabis on pain perception. <i>Pain</i> , 2013 , 154, 124-134	8	84
54	Flexible cerebral connectivity patterns subserve contextual modulations of pain. <i>Cerebral Cortex</i> , 2011 , 21, 719-26	5.1	79
53	Neurophysiological coding of traits and states in the perception of pain. <i>Cerebral Cortex</i> , 2011 , 21, 2408	3- 4.4	75
52	The effect of treatment history on therapeutic outcome: an experimental approach. <i>JAMA Internal Medicine</i> , 2013 , 173, 1468-9	11.5	69
51	Metabolic connectivity mapping reveals effective connectivity in the resting human brain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 428-33	11.5	59
50	Gamma oscillations as a neuronal correlate of the attentional effects of pain. <i>Pain</i> , 2010 , 150, 302-308	8	55
49	Brain oscillations differentially encode noxious stimulus intensity and pain intensity. <i>NeuroImage</i> , 2017 , 148, 141-147	7.9	53
48	Oscillatory activity reflects the excitability of the human somatosensory system. <i>NeuroImage</i> , 2006 , 32, 1231-6	7.9	50
47	Prefrontal gamma oscillations reflect ongoing pain intensity in chronic back pain patients. <i>Human Brain Mapping</i> , 2019 , 40, 293-305	5.9	49
46	Wilson's disease tremor is associated with magnetic resonance imaging lesions in basal ganglia structures. <i>Movement Disorders</i> , 2006 , 21, 2134-9	7	40
45	Differential neurophysiological correlates of bottom-up and top-down modulations of pain. <i>Pain</i> , 2015 , 156, 289-296	8	38
44	Differential effects of levodopa and subthalamic nucleus deep brain stimulation on bradykinesia in Parkinson disease. <i>Movement Disorders</i> , 2008 , 23, 218-27	7	37
43	Functional integration within the human pain system as revealed by Granger causality. <i>Human Brain Mapping</i> , 2009 , 30, 4025-32	5.9	33
42	The effects of treatment failure generalize across different routes of drug administration. <i>Science Translational Medicine</i> , 2017 , 9,	17.5	32
41	Dopamine precursor depletion influences pain affect rather than pain sensation. <i>PLoS ONE</i> , 2014 , 9, e9	63 <i>6</i> 7	32
40	Dscillations are involved in the sensorimotor transformation of pain. <i>Journal of Neurophysiology</i> , 2012 , 108, 1025-31	3.2	31
39	Pain facilitates tactile processing in human somatosensory cortices. <i>Journal of Neurophysiology</i> , 2004 , 92, 1825-9	3.2	30

38	Prevalence of neuropathic pain in early multiple sclerosis. <i>Multiple Sclerosis Journal</i> , 2016 , 22, 1224-30	5	29
37	The effect of treatment history on therapeutic outcome: psychological and neurobiological underpinnings. <i>PLoS ONE</i> , 2014 , 9, e109014	3.7	29
36	Electroencephalography and magnetoencephalography in pain research-current state and future perspectives. <i>Pain</i> , 2018 , 159, 206-211	8	27
35	Autonomic responses to tonic pain are more closely related to stimulus intensity than to pain intensity. <i>Pain</i> , 2017 , 158, 2129-2136	8	27
34	Brain dysfunction in chronic pain patients assessed by resting-state electroencephalography. <i>Pain</i> , 2019 , 160, 2751-2765	8	27
33	Behavioral and neuronal investigations of hypervigilance in patients with fibromyalgia syndrome. <i>PLoS ONE</i> , 2012 , 7, e35068	3.7	26
32	Modulation of human time processing by subthalamic deep brain stimulation. <i>PLoS ONE</i> , 2011 , 6, e2458	39 .7	26
31	Distinct patterns of brain activity mediate perceptual and motor and autonomic responses to noxious stimuli. <i>Nature Communications</i> , 2018 , 9, 4487	17.4	22
30	Pain processing is faster than tactile processing in the human brain. <i>Journal of Neuroscience</i> , 2006 , 26, 10879-82	6.6	20
29	Impaired cerebral oscillatory processing in hepatic encephalopathy. <i>Clinical Neurophysiology</i> , 2008 , 119, 265-72	4.3	19
28	Herpes encephalitis after meningioma resection. <i>Neurology</i> , 2005 , 65, 1674-5	6.5	15
27	Dissociable neural mechanisms underlying the modulation of pain and anxiety? An FMRI pilot study. <i>PLoS ONE</i> , 2014 , 9, e110654	3.7	13
26	Neural oscillations and connectivity characterizing the state of tonic experimental pain in humans. <i>Human Brain Mapping</i> , 2020 , 41, 17-29	5.9	13
25	Behavioral responses to noxious stimuli shape the perception of pain. <i>Scientific Reports</i> , 2017 , 7, 44083	4.9	12
24	Longitudinal prevalence and determinants of pain in multiple sclerosis: results from the German National Multiple Sclerosis Cohort study. <i>Pain</i> , 2020 , 161, 787-796	8	12
23	Fatigue, depression, and pain in multiple sclerosis: How neuroinflammation translates into dysfunctional reward processing and anhedonic symptoms. <i>Multiple Sclerosis Journal</i> , 2020 , 135245852	722 ق 0	79 ¹
22	Influence of pain on motor preparation in the human brain. Journal of Neurophysiology, 2017, 118, 2267	'- <u>32</u> 74	10
21	Cortical representation of venous nociception in humans. <i>Journal of Neurophysiology</i> , 2002 , 88, 300-5	3.2	9

(2021-2015)

20	Towards a taxonomy of pain modulations. <i>Trends in Cognitive Sciences</i> , 2015 , 19, 180-2	14	8
19	Differential effects of painful and non-painful stimulation on tactile processing in fibromyalgia syndrome and subjects with masochistic behaviour. <i>PLoS ONE</i> , 2010 , 5, e15804	3.7	8
18	Acute axonal neuropathy and Wernicke's encephalopathy. <i>Journal of Neurology</i> , 2006 , 253, 1516-7	5.5	8
17	From correlation towards causality: modulating brain rhythms of pain using transcranial alternating current stimulation. <i>Pain Reports</i> , 2019 , 4, e723	3.5	8
16	Case Series: Acute Hemorrhagic Encephalomyelitis After SARS-CoV-2 Vaccination <i>Frontiers in Neurology</i> , 2021 , 12, 820049	4.1	4
15	Extensive Recruitment of Plasma Blasts to the Cerebrospinal Fluid in Toscana Virus Encephalitis. <i>Open Forum Infectious Diseases</i> , 2015 , 2, ofv124	1	3
14	Perceptual decisions: from sensory signals to behavior. <i>Current Biology</i> , 2009 , 19, R847-9	6.3	3
13	Wernicke'⊌ encephalopathy. <i>Lancet, The</i> , 2003 , 361, 1000	40	2
12	Separate representations of static and dynamic touch in human somatosensory thalamus. <i>Neurology</i> , 2000 , 54, 2024-6	6.5	2
11	Behavioural relevance modulates access to spatial working memory in humans. <i>European Journal of Neuroscience</i> , 2001 , 13, 357-363	3.5	2
10	Exploring Dynamic Connectivity Biomarkers of Neuropsychiatric Disorders. <i>Trends in Cognitive Sciences</i> , 2021 , 25, 336-338	14	2
9	Perceptual and motor responses directly and indirectly mediate the effects of noxious stimuli on autonomic responses. <i>Pain</i> , 2019 , 160, 2811-2818	8	2
8	Applying Interdisciplinary Innovations to Advance Theories of Social Behavior: Response to Van Dessel and Colleagues. <i>Trends in Cognitive Sciences</i> , 2019 , 23, 450-451	14	1
7	Spontaneous Cerebrospinal Fluid Leak With Venous Engorgement Mimicking a Contrast-Enhancing Cervical Mass. <i>JAMA Neurology</i> , 2016 , 73, 886-7	17.2	1
6	Evoked response amplitudes from somatosensory cortices do not determine reaction times to tactile stimuli. <i>European Journal of Neuroscience</i> , 2007 , 25, 3734-41	3.5	1
5	Motor Responses to Noxious Stimuli Shape Pain Perception in Chronic Pain Patients. <i>ENeuro</i> , 2018 , 5,	3.9	1
4	Brain dysfunction in chronic pain patients assessed by resting-state electroencephalography		1
3	Dynamics of brain function in patients with chronic pain assessed by microstate analysis of resting-state electroencephalography. <i>Pain</i> , 2021 , 162, 2894-2908	8	1

Modulating Brain Rhythms of Pain Using Transcranial Alternating Current Stimulation (tACS) - A Sham-Controlled Study in Healthy Human Participants. *Journal of Pain*, **2021**, 22, 1256-1272

5.2 1

Kortikale ReprEentation von Schmerz. *E-Neuroforum*, **2003**, 9, 72-78