Peter A Sopade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6112586/publications.pdf

Version: 2024-02-01

172386 189801 2,735 72 29 50 citations h-index g-index papers 72 72 72 2319 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Kinetics of starch digestion in sorghum as affected by particle size. Journal of Food Engineering, 2010, 96, 18-28.	2.7	209
2	Modelling Water Absorption in Soybean, Cowpea and Peanuts at Three Temperatures Using Peleg's Equation. Journal of Food Science, 1990, 55, 1084-1087.	1.5	139
3	The use of Peleg's equation to model water absorption in some cereal grains during soaking. Journal of Food Engineering, 1992, 15, 269-283.	2.7	135
4	Rheology, texture and microstructure of gelatin gels with and without milk proteins. Food Hydrocolloids, 2014, 35, 484-493.	5.6	132
5	Kinetics of starch digestion and functional properties of twin-screw extruded sorghum. Journal of Cereal Science, 2010, 51, 392-401.	1.8	121
6	A Rapid <i>Inâ€vitro</i> Digestibility Assay Based on Glucometry for Investigating Kinetics of Starch Digestion. Starch/Staerke, 2009, 61, 245-255.	1.1	110
7	Application of the Williams–Landel–Ferry model to the viscosity–temperature relationship of Australian honeys. Journal of Food Engineering, 2003, 56, 67-75.	2.7	106
8	Particle size-starch–protein digestibility relationships in cowpea (Vigna unguiculata). Journal of Food Engineering, 2012, 113, 254-264.	2.7	99
9	Characterisation of sweetpotato from Papua New Guinea and Australia: Physicochemical, pasting and gelatinisation properties. Food Chemistry, 2011, 126, 1759-1770.	4.2	84
10	Rheological characterisation of food thickeners marketed in Australia in various media for the management of dysphagia. I: Water and cordial. Journal of Food Engineering, 2007, 79, 69-82.	2.7	81
11	The Plasticisation Effect of Glycerol and Water on the Gelatinisation of Wheat Starch. Starch/Staerke, 2003, 55, 131-137.	1.1	77
12	Investigation of the starch gelatinisation phenomena in water–glycerol systems: application of modulated temperature differential scanning calorimetry. Carbohydrate Polymers, 2004, 58, 191-204.	5.1	71
13	Preparation and characterisation of composites from starch and sugar cane fibre. Industrial Crops and Products, 2012, 40, 45-54.	2.5	69
14	Amylose content and chemical modification effects on the extrusion of thermoplastic starch from maize. Carbohydrate Polymers, 2008, 74, 907-913.	5.1	68
15	Rheological characterization of food thickeners marketed in Australia in various media for the management of dysphagia. III. Fruit juice as a dispersing medium. Journal of Food Engineering, 2008, 86, 604-615.	2.7	57
16	Gelatinisation of starch in mixtures of sugars. II. Application of differential scanning calorimetry. Carbohydrate Polymers, 2004, 58, 311-321.	5.1	55
17	Rheological characterisation of food thickeners marketed in Australia in various media for the management of dysphagia. II. Milk as a dispersing medium. Journal of Food Engineering, 2008, 84, 553-562.	2.7	55
18	Ethnobotany, diverse food uses, claimed health benefits and implications on conservation of barley landraces in North Eastern Ethiopia highlands. Journal of Ethnobiology and Ethnomedicine, 2011, 7, 19.	1.1	47

#	Article	IF	Citations
19	Thickened Fluids and Water Absorption in Rats and Humans. Dysphagia, 2007, 22, 193-203.	1.0	44
20	Rheology and microstructure of sago starch from Papua New Guinea. Journal of Food Engineering, 2001, 50, 47-57.	2.7	41
21	Cereal processing and glycaemic response. International Journal of Food Science and Technology, 2017, 52, 22-37.	1.3	40
22	Modeling Starch Digestograms: Computational Characteristics of Kinetic Models for <i>in vitro</i> Starch Digestion in Food Research. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 1422-1445.	5.9	40
23	Macromolecular Interactions During Gelatinisation and Retrogradation in Starch-Whey Systems as Studied by Rapid Visco-Analyser. International Journal of Food Engineering, 2006, 2, .	0.7	37
24	MOISTURE SORPTION STUDY ON NIGERIAN FOODS: MAIZE and SORGHUM. Journal of Food Process Engineering, 1994, 17, 33-56.	1.5	35
25	Functional properties and starch digestibility of instant Jasmine rice porridges. Carbohydrate Polymers, 2010, 82, 952-957.	5.1	34
26	Influence of extrusion on expansion, functional and digestibility properties of whole sweetpotato flour. LWT - Food Science and Technology, 2014, 59, 1136-1145.	2.5	34
27	Effect of added sucrose on extrusion cooking of maize starch. Food Control, 1991, 2, 103-109.	2.8	33
28	The influence of solid and sugar contents on rheological characteristics of akamu, a semi-liquid maize food. Journal of Food Engineering, 1995, 24, 197-211.	2.7	32
29	Physicochemical properties, resistant starch content and enzymatic digestibility of unripe banana, edible canna, taro flours and their rice noodle products. International Journal of Food Science and Technology, 2011, 46, 2111-2117.	1.3	32
30	Carotenoid contents of extruded and non-extruded sweetpotato flours from Papua New Guinea and Australia. Food Chemistry, 2013, 141, 1740-1746.	4.2	31
31	DYNAMIC AND STEADYâ€STATE RHEOLOGY OF AUSTRALIAN HONEYS AT SUBZERO TEMPERATURES. Journal of Food Process Engineering, 2004, 27, 284-309.	1.5	29
32	Dehydration improves cryopreservation of coconut (Cocos nucifera L.). Cryobiology, 2010, 61, 289-296.	0.3	29
33	CRITERIA FOR AN APPROPRIATE SORPTION MODEL BASED ON STATISTICAL ANALYSIS. International Journal of Food Properties, 2001, 4, 405-418.	1.3	28
34	Gelatinisation of starch in mixtures of sugars. I. Dynamic rheological properties and behaviours of starch–honey systems. Journal of Food Engineering, 2004, 61, 439-448.	2.7	28
35	Equivalence of the Peleg, Pilosof and Singh–Kulshrestha models for water absorption in food. Journal of Food Engineering, 2007, 78, 730-734.	2.7	28
36	Extrusion of a model sorghum-barley blend: Starch digestibility and associated properties. Journal of Cereal Science, 2017, 75, 314-323.	1.8	26

#	Article	IF	CITATIONS
37	Rheological characterization of akamu, a semi-liquid food made from maize, millet and sorghum. Journal of Cereal Science, 1992, 15, 193-202.	1.8	25
38	Estimating the Specific Heat Capacity of Starch-Water-Glycerol Systems as a Function of Temperature and Compositions. Starch/Staerke, 2004, 56, 6-12.	1.1	24
39	Dependence of in-vitro starch and protein digestions on particle size of field peas (Pisum sativum L.). LWT - Food Science and Technology, 2015, 63, 541-549.	2.5	24
40	APPLICATION OF PELEG'S EQUATION IN DESORPTION STUDIES OF FOOD SYSTEMS: A CASE STUDY WITH SAGO METROXYLON SAGU ROTTB STARCH. Drying Technology, 1999, 17, 975-989.	1.7	20
41	Weighing up whey fortification of foods: Implications for kinetics of starch digestion and estimated glycemic index of model high-protein-low-carbohydrate food systems. Carbohydrate Polymers, 2011, 84, 162-172.	5.1	20
42	Modelling starch digestion in sweetpotato with biphasic digestograms. Journal of Food Engineering, 2011, 104, 307-315.	2.7	20
43	<i>In vitro</i> starch digestion in sweet potato (<i><scp>I</scp>pomoea batatas <scp>L</scp></i> .) flours. International Journal of Food Science and Technology, 2013, 48, 150-156.	1.3	20
44	A Review of Biodegradable Thermoplastic Starch Polymers. ACS Symposium Series, 2007, , 287-300.	0.5	17
45	Moisture sorption isotherms of Nigerian millet at varying temperatures. Journal of Food Engineering, 1990, 12, 283-292.	2.7	16
46	Layered silicate nanocomposites based on various high-functionality epoxy resins. Part II: The influence of an organoclay on the rheological behavior of epoxy prepolymers. Polymer Engineering and Science, 2003, 43, 1683-1690.	1.5	16
47	Original article: <i>In vitro</i> starch digestion and potassium release in sweet potato from Papua New Guinea ^{â€} . International Journal of Food Science and Technology, 2010, 45, 1925-1931.	1.3	16
48	Characterisation of grain quality in diverse sorghum germplasm using a Rapid Visco-Analyzer and near infrared reflectance spectroscopy. Journal of the Science of Food and Agriculture, 2012, 92, 1402-1410.	1.7	16
49	Changes in rapid viscoâ€analysis (RVA) viscosity reveal starch digestion behaviours. Starch/Staerke, 2013, 65, 437-442.	1.1	14
50	Glass transition phenomena in molasses. LWT - Food Science and Technology, 2007, 40, 1117-1122.	2.5	13
51	Kinetics of starch digestion in sweetpotato flours from Papua New Guinean and Australian cultivars. Carbohydrate Polymers, 2012, 87, 461-470.	5.1	13
52	Modelling multiphasic starch digestograms with multiterm exponential and non-exponential equations. Carbohydrate Polymers, 2022, 275, 118698.	5.1	13
53	Moisture absorption characteristics of food thickeners used for the management of swallowing dysfunctions. European Food Research and Technology, 2007, 224, 555-560.	1.6	12
54	Specific heat capacity of starch-sucrose systems. Food Control, 1991, 2, 50-52.	2.8	11

#	Article	IF	Citations
55	Moisture sorption isotherms of dawadawa, a fermented African locust bean (Parkia biglobosa Jacq.) Tj ETQq1	1 0.784314 2.8	rgBT /Overlo
56	Wheat grain cooking process as investigated by modulated temperature differential scanning calorimetry. Carbohydrate Polymers, 2005, 61, 203-210.	5.1	11
57	Modelling multiphasic starch digestograms: an objective procedure for slope discontinuities ^{â€} . International Journal of Food Science and Technology, 2021, 56, 2651-2661.	1.3	11
58	Friction Factors and Rheological Behavior of Australian Honey in a Straight Pipe. International Journal of Food Properties, 2004, 7, 393-405.	1.3	9
59	The fate of cyanogens during the cooking of cassava in mumu, a traditional oven in Papua New Guinea. International Journal of Food Science and Technology, 2000, 35, 173-182.	1.3	8
60	SPECIFIC HEAT CAPACITY OF AUSTRALIAN HONEYS FROM 35 TO 165C AS A FUNCTION OF COMPOSITION USING DIFFERENTIAL SCANNING CALORIMETRY. Journal of Food Processing and Preservation, 2006, 30, 99-109.	0.9	8
61	Physical, chemical and wetâ€milling properties of commercial white maize hybrids cultivated in México. Journal of Food Processing and Preservation, 2019, 43, e13998.	0.9	8
62	Moisture sorption study on Nigerian foods: Kuka. Journal of Stored Products Research, 1994, 30, 331-338.	1.2	6
63	Evaluation of wet-milling performance of commercial yellow maize hybrids grown in MÃ $@$ xico and relations with grain physicochemical properties. Journal of Food Science and Technology, 0, , 1.	1.4	6
64	Kinetics of water absorption and relation with physical, chemical, and wetâ€milling properties of commercial yellow maize (<i>Zea mays ⟨i⟩ L.) hybrids. Journal of Food Processing and Preservation, 2020, 44, e14509.</i>	0.9	5
65	Rheological characterization of some Nigerian traditional soups. International Journal of Food Science and Technology, 1993, 28, 647-653.	1.3	4
66	MOISTUREâ€SORPTION ISOTHERMS OF IRISH AND SWEET POTATOES. Journal of Food Process Engineering, 2010, 33, 385-397.	1.5	4
67	Hydration kinetics of commercial white maize (Zea mays L.) hybrids, and associations with grain intrinsic and wet-milling properties. Journal of Cereal Science, 2021, 101, 103279.	1.8	4
68	Kinetics of starch digestion in potato (Solanum tuberosum) flours: Innovative modelling and relationships with particle size. Journal of Food Engineering, 2022, 329, 111089.	2.7	4
69	Flow behaviour of akamu from different maize varieties and fortified with soybean flour. Food Control, 1997, 8, 105-111.	2.8	3
70	Homogeneities in $\langle i \rangle$ in vitro $\langle j \rangle$ starch digestion of compositionally heterogenous white wheat breads. International Journal of Food Science and Technology, 0, , .	1.3	3
71	Significance of starch-sucrose interaction in extrusion cooking. Food Control, 1991, 2, 181-184.	2.8	2
72	Conservation of coconut (Cocos nucifera L.) germplasm at sub-zero temperature. Cryo-Letters, 2012, 33, 465-75.	0.1	2