## Simon C Benjamin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6112126/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Quantum analytic descent. Physical Review Research, 2022, 4, .                                                                                               | 1.3  | 15        |
| 2  | Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation. Journal of the Physical Society of Japan, 2021, 90, 032001.                                | 0.7  | 263       |
| 3  | Variational Circuit Compiler for Quantum Error Correction. Physical Review Applied, 2021, 15, .                                                              | 1.5  | 16        |
| 4  | Mitigating Realistic Noise in Practical Noisy Intermediate-Scale Quantum Devices. Physical Review Applied, 2021, 15, .                                       | 1.5  | 53        |
| 5  | Variational quantum algorithms. Nature Reviews Physics, 2021, 3, 625-644.                                                                                    | 11.9 | 930       |
| 6  | Variational algorithms for linear algebra. Science Bulletin, 2021, 66, 2181-2188.                                                                            | 4.3  | 72        |
| 7  | The prospects of quantum computing in computational molecular biology. Wiley Interdisciplinary<br>Reviews: Computational Molecular Science, 2021, 11, e1481. | 6.2  | 108       |
| 8  | Learning-Based Quantum Error Mitigation. PRX Quantum, 2021, 2, .                                                                                             | 3.5  | 82        |
| 9  | Demonstration of Adiabatic Variational Quantum Computing with a Superconducting Quantum<br>Coprocessor. Physical Review Letters, 2020, 125, 180501.          | 2.9  | 33        |
| 10 | Variational-state quantum metrology. New Journal of Physics, 2020, 22, 083038.                                                                               | 1.2  | 59        |
| 11 | Quantum computational chemistry. Reviews of Modern Physics, 2020, 92, .                                                                                      | 16.4 | 726       |
| 12 | Variational Quantum Simulation of General Processes. Physical Review Letters, 2020, 125, 010501.                                                             | 2.9  | 137       |
| 13 | Mitigating coherent noise using Pauli conjugation. Npj Quantum Information, 2020, 6, .                                                                       | 2.8  | 23        |
| 14 | QuESTlink—Mathematica embiggened by a hardware-optimised quantum emulator <sup>*</sup> .<br>Quantum Science and Technology, 2020, 5, 034012.                 | 2.6  | 27        |
| 15 | Constructing Smaller Pauli Twirling Sets for Arbitrary Error Channels. Scientific Reports, 2019, 9, 11281.                                                   | 1.6  | 16        |
| 16 | QuEST and High Performance Simulation of Quantum Computers. Scientific Reports, 2019, 9, 10736.                                                              | 1.6  | 136       |
| 17 | Variational ansatz-based quantum simulation of imaginary time evolution. Npj Quantum Information, 2019, 5, .                                                 | 2.8  | 285       |
| 18 | Measurement-driven analog of adiabatic quantum computation for frustration-free Hamiltonians.<br>Physical Review A. 2019, 100                                | 1.0  | 0         |

| #  | Article                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Variational quantum algorithms for discovering Hamiltonian spectra. Physical Review A, 2019, 99, .                                            | 1.0 | 164       |
| 20 | Fault-tolerant protection of near-term trapped-ion topological qubits under realistic noise sources.<br>Physical Review A, 2019, 100, .       | 1.0 | 20        |
| 21 | High-Threshold Code for Modular Hardware With Asymmetric Noise. Physical Review Applied, 2019, 12, .                                          | 1.5 | 11        |
| 22 | Network architecture for a topological quantum computer in silicon. Quantum Science and Technology, 2019, 4, 025003.                          | 2.6 | 21        |
| 23 | An integrity measure to benchmark quantum error correcting memories. New Journal of Physics, 2018, 20, 023009.                                | 1.2 | 5         |
| 24 | Practical Quantum Error Mitigation for Near-Future Applications. Physical Review X, 2018, 8, .                                                | 2.8 | 317       |
| 25 | One-dimensional quantum computing with a â€~segmented chain' is feasible with today's gate fidelities.<br>Npj Quantum Information, 2018, 4, . | 2.8 | 10        |
| 26 | Entanglement distillation between solid-state quantum network nodes. Science, 2017, 356, 928-932.                                             | 6.0 | 277       |
| 27 | Efficient Variational Quantum Simulator Incorporating Active Error Minimization. Physical Review X, 2017, 7, .                                | 2.8 | 409       |
| 28 | Minimally complex ion traps as modules for quantum communication and computing. New Journal of Physics, 2016, 18, 103028.                     | 1.2 | 39        |
| 29 | A silicon-based surface code quantum computer. Npj Quantum Information, 2016, 2, .                                                            | 2.8 | 53        |
| 30 | Hierarchical surface code for network quantum computing with modules of arbitrary size. Physical<br>Review A, 2016, 94, .                     | 1.0 | 13        |
| 31 | Stabilizers as a design tool for new forms of the Lechner-Hauke-Zoller annealer. Science Advances, 2016, 2, e1601246.                         | 4.7 | 31        |
| 32 | A Direct Mapping of Max k-SAT and High Order Parity Checks to a Chimera Graph. Scientific Reports, 2016, 6, 37107.                            | 1.6 | 27        |
| 33 | Resource Costs for Fault-Tolerant Linear Optical Quantum Computing. Physical Review X, 2015, 5, .                                             | 2.8 | 57        |
| 34 | Quantum dynamics in a tiered non-Markovian environment. New Journal of Physics, 2015, 17, 023063.                                             | 1.2 | 11        |
| 35 | Freely Scalable Quantum Technologies Using Cells of 5-to-50 Qubits with Very Lossy and Noisy<br>Photonic Links. Physical Review X, 2014, 4, . | 2.8 | 126       |
| 36 | Topological quantum computing with a very noisy network and local error rates approaching one percent. Nature Communications, 2013, 4, 1756.  | 5.8 | 144       |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Quantum sensors based on weak-value amplification cannot overcome decoherence. Physical Review<br>A, 2013, 87, .                                                                                        | 1.0 | 43        |
| 38 | Practicality of Spin Chain Wiring in Diamond Quantum Technologies. Physical Review Letters, 2013, 110, 100503.                                                                                          | 2.9 | 34        |
| 39 | Comment on "Quantum Coherence and Sensitivity of Avian Magnetoreception― Physical Review<br>Letters, 2013, 110, 178901.                                                                                 | 2.9 | 14        |
| 40 | Long range failure-tolerant entanglement distribution. New Journal of Physics, 2013, 15, 023012.                                                                                                        | 1.2 | 21        |
| 41 | Comment on â€~A scattering quantum circuit for measuring Bell's time inequality: a nuclear magnetic<br>resonance demonstration using maximally mixed states'. New Journal of Physics, 2012, 14, 058001. | 1.2 | 7         |
| 42 | Quantum entanglement distribution using a magnetic field sensor. New Journal of Physics, 2012, 14, 023046.                                                                                              | 1.2 | 4         |
| 43 | Measurement-based quantum computing with a spin ensemble coupled to a stripline cavity. New Journal of Physics, 2012, 14, 013030.                                                                       | 1.2 | 5         |
| 44 | High threshold distributed quantum computing with three-qubit nodes. New Journal of Physics, 2012, 14, 093008.                                                                                          | 1.2 | 28        |
| 45 | Violation of a Leggett–Garg inequality with ideal non-invasive measurements. Nature<br>Communications, 2012, 3, 606.                                                                                    | 5.8 | 172       |
| 46 | A New Type of Radical-Pair-Based Model for Magnetoreception. Biophysical Journal, 2012, 102, 961-968.                                                                                                   | 0.2 | 32        |
| 47 | Sustained Quantum Coherence and Entanglement in the Avian Compass. Physical Review Letters, 2011, 106, 040503.                                                                                          | 2.9 | 255       |
| 48 | Proposed Spin Amplification for Magnetic Sensors Employing Crystal Defects. Physical Review Letters, 2011, 107, 207210.                                                                                 | 2.9 | 50        |
| 49 | Rapid and Robust Spin State Amplification. Physical Review Letters, 2011, 106, 167204.                                                                                                                  | 2.9 | 8         |
| 50 | Magnetic field sensing beyond the standard quantum limit under the effect of decoherence. Physical<br>Review A, 2011, 84, .                                                                             | 1.0 | 157       |
| 51 | Entangling unstable optically active matter qubits. Physical Review A, 2011, 83, .                                                                                                                      | 1.0 | 2         |
| 52 | Snapshots of diamond spins. Nature Physics, 2011, 7, 929-930.                                                                                                                                           | 6.5 | 0         |
| 53 | Distributed quantum computation with arbitrarily poor photon detection. Physical Review A, 2010, 82, .                                                                                                  | 1.0 | 5         |
| 54 | Fault Tolerant Quantum Computation with Nondeterministic Gates. Physical Review Letters, 2010, 105, 250502.                                                                                             | 2.9 | 41        |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Quantum metrology with molecular ensembles. Physical Review A, 2010, 82, .                                                                                                                    | 1.0 | 34        |
| 56 | Probabilistic Growth of Large Entangled States with Low Error Accumulation. Physical Review<br>Letters, 2010, 104, 050501.                                                                    | 2.9 | 20        |
| 57 | Entangling Remote Nuclear Spins Linked by a Chromophore. Physical Review Letters, 2010, 104, 200501.                                                                                          | 2.9 | 17        |
| 58 | Magnetic Field Sensing Beyond the Standard Quantum Limit Using 10-Spin NOON States. Science, 2009, 324, 1166-1168.                                                                            | 6.0 | 214       |
| 59 | Comment on "Multipartite Entanglement Among Single Spins in Diamond". Science, 2009, 323, 1169-1169.                                                                                          | 6.0 | 5         |
| 60 | Large spin entangled current from a passive device. New Journal of Physics, 2009, 11, 013018.                                                                                                 | 1.2 | 3         |
| 61 | Prospects for measurementâ€based quantum computing with solid state spins. Laser and Photonics<br>Reviews, 2009, 3, 556-574.                                                                  | 4.4 | 97        |
| 62 | Measurement-based approach to entanglement generation in coupled quantum dots. Physical Review B, 2009, 79, .                                                                                 | 1.1 | 4         |
| 63 | High-fidelity all-optical control of quantum dot spins: Detailed study of the adiabatic approach.<br>Physical Review B, 2008, 77, .                                                           | 1.1 | 33        |
| 64 | Robust adiabatic approach to optical spin entangling in coupled quantum dots. New Journal of Physics, 2008, 10, 073016.                                                                       | 1.2 | 21        |
| 65 | Evolutionary route to computation in self-assembled nanoarrays. , 2008, , .                                                                                                                   |     | 0         |
| 66 | Measurement-Based Entanglement under Conditions of Extreme Photon Loss. Physical Review Letters, 2008, 101, 130502.                                                                           | 2.9 | 51        |
| 67 | Efficient growth of complex graph states via imperfect path erasure. New Journal of Physics, 2007, 9, 196-196.                                                                                | 1.2 | 12        |
| 68 | Quantum Information Processing with Delocalized Qubits under Global Control. Physical Review Letters, 2007, 99, 030501.                                                                       | 2.9 | 26        |
| 69 | Adaptive strategies for graph-state growth in the presence of monitored errors. Physical Review A, 2007, 75, .                                                                                | 1.0 | 18        |
| 70 | Toward Controlled Spacing in One-Dimensional Molecular Chains:Â Alkyl-Chain-Functionalized<br>Fullerenes in Carbon Nanotubes. Journal of the American Chemical Society, 2007, 129, 8609-8614. | 6.6 | 51        |
| 71 | Manipulation of quantum information in N@C <sub>60</sub> using electron and nuclear magnetic resonance. Physica Status Solidi (B): Basic Research, 2007, 244, 3874-3878.                      | 0.7 | 4         |
| 72 | Coherence of spin qubits in silicon. Journal of Physics Condensed Matter, 2006, 18, S783-S794.                                                                                                | 0.7 | 107       |

| #  | Article                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Towards a fullerene-based quantum computer. Journal of Physics Condensed Matter, 2006, 18,<br>S867-S883.                                                 | 0.7 | 138       |
| 74 | Brokered graph-state quantum computation. New Journal of Physics, 2006, 8, 141-141.                                                                      | 1.2 | 109       |
| 75 | The N@C60 nuclear spin qubit: Bang-bang decoupling and ultrafast phase gates. Physica Status Solidi<br>(B): Basic Research, 2006, 243, 3028-3031.        | 0.7 | 30        |
| 76 | Bang–bang control of fullerene qubits using ultrafast phase gates. Nature Physics, 2006, 2, 40-43.                                                       | 6.5 | 174       |
| 77 | Processor Core Model for Quantum Computing. Physical Review Letters, 2006, 96, 220501.                                                                   | 2.9 | 28        |
| 78 | All-Optical Measurement-Based Quantum-Information Processing in Quantum Dots. Physical Review Letters, 2006, 97, 250504.                                 | 2.9 | 21        |
| 79 | Optical generation of matter qubit graph states. New Journal of Physics, 2005, 7, 194-194.                                                               | 1.2 | 50        |
| 80 | Comment on "Efficient high-fidelity quantum computation using matter qubits and linear opticsâ€ <del>.</del><br>Physical Review A, 2005, 72, .           | 1.0 | 29        |
| 81 | Quantum computing in arrays coupled by "always-on―interactions. Physical Review A, 2004, 70, .                                                           | 1.0 | 46        |
| 82 | Optical quantum computation with perpetually coupled spins. Physical Review A, 2004, 70, .                                                               | 1.0 | 17        |
| 83 | Multi-qubit gates in arrays coupled by Âalways-on interactions. New Journal of Physics, 2004, 6, 61-61.                                                  | 1.2 | 14        |
| 84 | Nanoscale solid-state quantum computing. Philosophical Transactions Series A, Mathematical,<br>Physical, and Engineering Sciences, 2003, 361, 1473-1485. | 1.6 | 52        |
| 85 | Quantum Computing with an Always-On Heisenberg Interaction. Physical Review Letters, 2003, 90, 247901.                                                   | 2.9 | 161       |
| 86 | Comment on "Quantum Games and Quantum Strategies''. Physical Review Letters, 2001, 87, 069801.                                                           | 2.9 | 121       |
| 87 | Evolutionary quantum game. Journal of Physics A, 2001, 34, L547-L552.                                                                                    | 1.6 | 44        |
| 88 | Multiplayer quantum games. Physical Review A, 2001, 64, .                                                                                                | 1.0 | 231       |
| 89 | Simple pulses for universal quantum computation with a HeisenbergABABchain. Physical Review A, 2001, 64, .                                               | 1.0 | 40        |
| 90 | Quantum Computing Without Local Control of Qubit-Qubit Interactions. Physical Review Letters, 2001, 88, 017904.                                          | 2.9 | 68        |

| #   | Article                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Comment on "A quantum approach to static games of completeÂinformation― Physics Letters, Section<br>A: General, Atomic and Solid State Physics, 2000, 277, 180-182. | 0.9 | 27        |
| 92  | Schemes for parallel quantum computation without local control of qubits. Physical Review A, 2000, 61, .                                                            | 1.0 | 60        |
| 93  | QUANTUM CRYPTOGRAPHY: Single Photons. Science, 2000, 290, 2273-2274.                                                                                                | 6.0 | 17        |
| 94  | Cellular structures for computation in the quantum regime. Physical Review A, 1999, 60, 4334-4337.                                                                  | 1.0 | 10        |
| 95  | Exact dynamical response of an N-electron quantum dotsubject to a time-dependent potential. Physical<br>Review B, 1997, 55, R4903-R4906.                            | 1.1 | 2         |
| 96  | A possible nanometer-scale computing device based on an adding cellular automaton. Applied Physics<br>Letters, 1997, 70, 2321-2323.                                 | 1.5 | 42        |
| 97  | Cellular automata models of traffic flow along a highway containing a junction. Journal of Physics<br>A, 1996, 29, 3119-3127.                                       | 1.6 | 231       |
| 98  | Analytic results for the linear and nonlinear response of atoms in a trap with a model interaction.<br>Physical Review A, 1996, 54, 4309-4314.                      | 1.0 | 6         |
| 99  | Entangled electronic states in multiple-quantum-dot systems. Physical Review B, 1995, 51, 14733-14736.                                                              | 1.1 | 27        |
| 100 | Electron correlations and fractional quantum Hall states in a double-layer electron system. Journal of Physics Condensed Matter, 1995, 7, L159-L164.                | 0.7 | 1         |
| 101 | Investigating the potential for a limited quantum speedup on protein lattice problems. New Journal of Physics, 0, , .                                               | 1.2 | 6         |
| 102 | Theory of variational quantum simulation. Quantum - the Open Journal for Quantum Science, 0, 3, 191.                                                                | 0.0 | 245       |
| 103 | A Silicon Surface Code Architecture Resilient Against Leakage Errors. Quantum - the Open Journal for Quantum Science, 0, 3, 212.                                    | 0.0 | 9         |
| 104 | Robust quantum compilation and circuit optimisation via energy minimisation. Quantum - the Open<br>Journal for Quantum Science, 0, 6, 628.                          | 0.0 | 22        |