
Jerome Chave

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6111943/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Towards a worldwide wood economics spectrum. Ecology Letters, 2009, 12, 351-366.	6.4	2,219
2	The global spectrum of plant form and function. Nature, 2016, 529, 167-171.	27.8	2,022
3	Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 2014, 20, 3177-3190.	9.5	1,712
4	Drought Sensitivity of the Amazon Rainforest. Science, 2009, 323, 1344-1347.	12.6	1,443
5	Beta-Diversity in Tropical Forest Trees. Science, 2002, 295, 666-669.	12.6	1,176
6	Averting biodiversity collapse in tropical forest protected areas. Nature, 2012, 489, 290-294.	27.8	909
7	Hyperdominance in the Amazonian Tree Flora. Science, 2013, 342, 1243092.	12.6	873
8	Rare Species Support Vulnerable Functions in High-Diversity Ecosystems. PLoS Biology, 2013, 11, e1001569.	5.6	654
9	REGIONAL AND PHYLOGENETIC VARIATION OF WOOD DENSITY ACROSS 2456 NEOTROPICAL TREE SPECIES. , 2006, 16, 2356-2367.		632
10	Continental-scale patterns of canopy tree composition and function across Amazonia. Nature, 2006, 443, 444-447.	27.8	593
11	The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology, 2006, 12, 1107-1138.	9.5	497
12	The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology, 2004, 10, 563-591.	9.5	436
13	Rapid decay of tree-community composition in Amazonian forest fragments. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19010-19014.	7.1	371
14	Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. Journal of Ecology, 2003, 91, 240-252.	4.0	357
15	Ecophylogenetics: advances and perspectives. Biological Reviews, 2012, 87, 769-785.	10.4	341
16	Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 2010, 13, 1338-1347.	6.4	312
17	Biodiversity recovery of Neotropical secondary forests. Science Advances, 2019, 5, eaau3114.	10.3	291
18	Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecology Letters, 2006, 9, 575-588.	6.4	280

#	Article	IF	CITATIONS
19	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	9.5	265
20	Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. Journal of Tropical Ecology, 2001, 17, 79-96.	1.1	262
21	Decomposition in tropical forests: a panâ€tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology, 2009, 97, 801-811.	4.0	256
22	<scp>biomass</scp> : an <scp>r</scp> package for estimating aboveâ€ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 2017, 8, 1163-1167.	5.2	256
23	Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology, 2017, 23, 177-190.	9.5	254
24	Diversity and carbon storage across the tropical forest biome. Scientific Reports, 2017, 7, 39102.	3.3	251
25	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.	5.8	248
26	A Spatially Explicit Neutral Model of \hat{l}^2 -Diversity in Tropical Forests. Theoretical Population Biology, 2002, 62, 153-168.	1.1	225
27	Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 2015, 6, 6857.	12.8	214
28	An unexpectedly large count of trees in the West African Sahara and Sahel. Nature, 2020, 587, 78-82.	27.8	212
29	Terrestrial laser scanning in forest ecology: Expanding the horizon. Remote Sensing of Environment, 2020, 251, 112102.	11.0	208
30	A Standard Protocol for Liana Censuses1. Biotropica, 2006, 38, 256-261.	1.6	207
31	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	12.6	198
32	Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. Journal of Ecology, 2012, 100, 690-701.	4.0	191
33	Assessing Evidence for a Pervasive Alteration in Tropical Tree Communities. PLoS Biology, 2008, 6, e45.	5.6	187
34	Functional traits shape ontogenetic growth trajectories of rain forest tree species. Journal of Ecology, 2011, 99, 1431-1440.	4.0	180
35	Identification of Amazonian Trees with DNA Barcodes. PLoS ONE, 2009, 4, e7483.	2.5	176
36	The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space. Remote Sensing of Environment, 2019, 227, 44-60.	11.0	172

#	Article	IF	CITATIONS
37	Structure and Biomass of Four Lowland Neotropical Forests. Biotropica, 2004, 36, 7-19.	1.6	169
38	The relationship between wood density and mortality in a global tropical forest data set. New Phytologist, 2010, 188, 1124-1136.	7.3	164
39	Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nature Ecology and Evolution, 2018, 2, 827-835.	7.8	160
40	Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Functional Ecology, 2015, 29, 1268-1277.	3.6	151
41	Functional trait variation and sampling strategies in speciesâ€rich plant communities. Functional Ecology, 2010, 24, 208-216.	3.6	147
42	Censusing and Measuring Lianas: A Quantitative Comparison of the Common Methods1. Biotropica, 2006, 38, 581-591.	1.6	142
43	Satellite-observed pantropical carbon dynamics. Nature Plants, 2019, 5, 944-951.	9.3	141
44	Above-ground biomass and productivity in a rain forest of eastern South America. Journal of Tropical Ecology, 2008, 24, 355-366.	1.1	140
45	Annual Rainfall and Seasonality Predict Panâ€ŧropical Patterns of Liana Density and Basal Area. Biotropica, 2010, 42, 309-317.	1.6	134
46	Testing the generality of aboveâ \in ground biomass allometry across plant functional types at the continent scale. Global Change Biology, 2016, 22, 2106-2124.	9.5	133
47	Body size determines soil community assembly in a tropical forest. Molecular Ecology, 2019, 28, 528-543.	3.9	129
48	Tropical forests did not recover from the strong 2015–2016 El Niño event. Science Advances, 2020, 6, eaay4603.	10.3	127
49	Reconciling neutral community models and environmental filtering: theory and an empirical test. Oikos, 2008, 117, 1308-1320.	2.7	124
50	Functional traits of individual trees reveal ecological constraints on community assembly in tropical rain forests. Oikos, 2011, 120, 720-727.	2.7	124
51	Study of structural, successional and spatial patterns in tropical rain forests using TROLL, a spatially explicit forest model. Ecological Modelling, 1999, 124, 233-254.	2.5	122
52	Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nature Ecology and Evolution, 2019, 3, 928-934.	7.8	120
53	SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guiana. Remote Sensing of Environment, 2016, 175, 138-147.	11.0	118
54	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	9.5	116

#	Article	IF	CITATIONS
55	Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite. Nature Ecology and Evolution, 2018, 2, 1428-1435.	7.8	114
56	Modelling forest–savanna mosaic dynamics in man-influenced environments: effects of fire, climate and soil heterogeneity. Ecological Modelling, 2004, 171, 85-102.	2.5	111
5 7	Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests. Biogeosciences, 2016, 13, 2537-2562.	3.3	108
58	Tree size and climatic water deficit control root to shoot ratio in individual trees globally. New Phytologist, 2018, 217, 8-11.	7.3	108
59	Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 2022, 270, 112845.	11.0	108
60	Phylogenetic density dependence and environmental filtering predict seedling mortality in a tropical forest. Ecology Letters, 2012, 15, 34-41.	6.4	106
61	Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family. Molecular Ecology Resources, 2014, 14, 966-975.	4.8	102
62	Does climate directly influence <scp>NPP</scp> globally?. Global Change Biology, 2016, 22, 12-24.	9.5	98
63	Inferring the parameters of the neutral theory of biodiversity using phylogenetic information and implications for tropical forests. Ecology Letters, 2009, 12, 239-248.	6.4	97
64	The TropiSAR Airborne Campaign in French Guiana: Objectives, Description, and Observed Temporal Behavior of the Backscatter Signal. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 3228-3241.	6.3	97
65	Latitudinal phytoplankton distribution and the neutral theory of biodiversity. Global Ecology and Biogeography, 2013, 22, 531-543.	5.8	93
66	Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest. Remote Sensing of Environment, 2015, 169, 93-101.	11.0	92
67	Ground Data are Essential for Biomass Remote Sensing Missions. Surveys in Geophysics, 2019, 40, 863-880.	4.6	91
68	The erosion of biodiversity and biomass in the Atlantic Forest biodiversity hotspot. Nature Communications, 2020, 11, 6347.	12.8	81
69	Determinants and spatial modeling of tree βâ€diversity in a tropical forest landscape in Panama. Journal of Vegetation Science, 2006, 17, 83-92.	2.2	80
70	Field methods for sampling tree height for tropical forest biomass estimation. Methods in Ecology and Evolution, 2018, 9, 1179-1189.	5.2	78
71	Panâ€ŧropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 2018, 27, 1366-1383.	5.8	78
72	Nutrient-cycling mechanisms other than the direct absorption from soil may control forest structure and dynamics in poor Amazonian soils. Scientific Reports, 2017, 7, 45017	3.3	76

#	Article	IF	CITATIONS
73	Analyzing Tropical Forest Tree Species Abundance Distributions Using a Nonneutral Model and through Approximate Bayesian Inference. American Naturalist, 2011, 178, E37-E47.	2.1	74
74	Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests. Scientific Reports, 2020, 10, 2302.	3.3	74
75	Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 2015, 21, 1295-1307.	4.1	72
76	Evidence for arrested succession in a lianaâ€infested Amazonian forest. Journal of Ecology, 2016, 104, 149-159.	4.0	71
77	Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. Soil Biology and Biochemistry, 2016, 96, 16-19.	8.8	71
78	Diversity of the Volatile Organic Compounds Emitted by 55 Species of Tropical Trees: a Survey in French Guiana. Journal of Chemical Ecology, 2009, 35, 1349-1362.	1.8	67
79	Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth System Science Data, 2021, 13, 2607-2649.	9.9	65
80	Shifts in species and phylogenetic diversity between sapling and tree communities indicate negative density dependence in a lowland rain forest. Journal of Ecology, 2010, 98, 137-146.	4.0	64
81	Is temporal variation of seedling communities determined by environment or by seed arrival? A test in a neotropical forest. Journal of Ecology, 2007, 95, 507-516.	4.0	63
82	Fast demographic traits promote high diversification rates of Amazonian trees. Ecology Letters, 2014, 17, 527-536.	6.4	63
83	Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.	12.8	62
84	Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them. Surveys in Geophysics, 2019, 40, 881-911.	4.6	61
85	Unveiling the Diet of Elusive Rainforest Herbivores in Next Generation Sequencing Era? The Tapir as a Case Study. PLoS ONE, 2013, 8, e60799.	2.5	60
86	Largeâ€scale DNAâ€based survey of frogs in Amazonia suggests a vast underestimation of species richness and endemism. Journal of Biogeography, 2020, 47, 1781-1791.	3.0	60
87	Mast Fruiting Is a Frequent Strategy in Woody Species of Eastern South America. PLoS ONE, 2007, 2, e1079.	2.5	59
88	Floral scent variation in two Antirrhinum majus subspecies influences the choice of naÃ ⁻ ve bumblebees. Behavioral Ecology and Sociobiology, 2011, 65, 1015-1027.	1.4	55
89	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	3.3	53
90	Interspecific variation in seedling responses to seed limitation and habitat conditions for 14 Neotropical woody species. Journal of Ecology, 2009, 97, 186-197.	4.0	51

#	Article	IF	CITATIONS
91	<i>In Situ</i> Reference Datasets From the TropiSAR and AfriSAR Campaigns in Support of Upcoming Spaceborne Biomass Missions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 3617-3627.	4.9	49
92	Illumination-size relationships of 109 coexisting tropical forest tree species. Journal of Ecology, 2006, 94, 494-507.	4.0	46
93	Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecology and Diversity, 2014, 7, 215-229.	2.4	45
94	The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Scientific Data, 2019, 6, 198.	5.3	44
95	Botany, Genetics and Ethnobotany: A Crossed Investigation on the Elusive Tapir's Diet in French Guiana. PLoS ONE, 2011, 6, e25850.	2.5	43
96	Evolutionary heritage influences Amazon tree ecology. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161587.	2.6	43
97	Improving plant allometry by fusing forest models and remote sensing. New Phytologist, 2019, 223, 1159-1165.	7.3	43
98	Fast determination of light availability and leaf area index in tropical forests. Journal of Tropical Ecology, 2002, 18, 295-302.	1.1	41
99	Colonization front of the understorey palm Astrocaryum sciophilum in a pristine rain forest of French Guiana. Global Ecology and Biogeography, 2003, 12, 237-248.	5.8	41
100	Origin and evolution of Chrysobalanaceae: insights into the evolution of plants in the Neotropics. Botanical Journal of the Linnean Society, 2013, 171, 19-37.	1.6	41
101	Shotgun assembly of the assassin bug Brontostoma colossus mitochondrial genome (Heteroptera,) Tj ETQq 11	0.7 <u>84</u> 314	rgBT/Overlo 41
102	The role of gap phase processes in the biomass dynamics of tropical forests. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2857-2864.	2.6	40
103	Quantifying micro-environmental variation in tropical rainforest understory at landscape scale by combining airborne LiDAR scanning and a sensor network. Annals of Forest Science, 2017, 74, 1.	2.0	40
104	An individualâ€based forest model to jointly simulate carbon and tree diversity in Amazonia: description and applications. Ecological Monographs, 2017, 87, 632-664.	5.4	40
105	Mapping the imprint of biotic interactions on $\hat{I}^2 \hat{a} \in \mathbf{d}$ iversity. Ecology Letters, 2018, 21, 1660-1669.	6.4	40
106	Habitat specialization and phylogenetic structure of tree species in a coastal Brazilian white-sand forest. Journal of Plant Ecology, 2014, 7, 134-144.	2.3	39
107	Estimating the aboveground biomass in an old secondary forest on limestone in the Moluccas, Indonesia: Comparing locally developed versus existing allometric models. Forest Ecology and Management, 2017, 389, 27-34.	3.2	37
108	Functional diversity improves tropical forest resilience: Insights from a longâ€ŧerm virtual experiment. Journal of Ecology, 2020, 108, 831-843.	4.0	36

#	Article	IF	CITATIONS
109	Functional recovery of secondary tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
110	Prevalence of phylogenetic clustering at multiple scales in an African rain forest tree community. Journal of Ecology, 2014, 102, 1008-1016.	4.0	33
111	Disentangling competitive vs. climatic drivers of tropical forest mortality. Journal of Ecology, 2018, 106, 1165-1179.	4.0	33
112	Differences in volatile terpene composition between the bark and leaves of tropical tree species. Phytochemistry, 2012, 82, 81-88.	2.9	32
113	Evolutionary patterns of volatile terpene emissions across 202 tropical tree species. Ecology and Evolution, 2016, 6, 2854-2864.	1.9	32
114	Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes. Biogeosciences, 2018, 15, 3377-3390.	3.3	32
115	Evolutionary diversity is associated with wood productivity in Amazonian forests. Nature Ecology and Evolution, 2019, 3, 1754-1761.	7.8	32
116	Historical biogeography identifies a possible role of Miocene wetlands in the diversification of the Amazonian rocket frogs (Aromobatidae: <i>Allobates</i>). Journal of Biogeography, 2020, 47, 2472-2482.	3.0	31
117	Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees. PeerJ, 2016, 4, e2402.	2.0	31
118	Consistency of vegetation index seasonality across the Amazon rainforest. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 42-53.	2.8	29
119	Leaf drought tolerance cannot be inferred from classic leaf traits in a tropical rainforest. Journal of Ecology, 2020, 108, 1030-1045.	4.0	29
120	Causes of variation in leaf-level drought tolerance within an Amazonian forest. The Journal of Plant Hydraulics, 0, 3, e004.	1.0	29
121	The Status of Technologies to Measure Forest Biomass and Structural Properties: State of the Art in SAR Tomography of Tropical Forests. Surveys in Geophysics, 2019, 40, 779-801.	4.6	28
122	Live aboveground carbon stocks in natural forests of Colombia. Forest Ecology and Management, 2016, 374, 119-128.	3.2	27
123	Pantropical variability in tree crown allometry. Global Ecology and Biogeography, 2021, 30, 459-475.	5.8	27
124	Amazon tree dominance across forest strata. Nature Ecology and Evolution, 2021, 5, 757-767.	7.8	27
125	Community variation in wood density along a bioclimatic gradient on a hyperâ€diverse tropical island. Journal of Vegetation Science, 2017, 28, 19-33.	2.2	26
126	Floristic patterns and plant traits of Mediterranean communities in fragmented habitats. Journal of Biogeography, 2006, 33, 1235-1245.	3.0	24

#	Article	IF	CITATIONS
127	Tallo: A global tree allometry and crown architecture database. Global Change Biology, 2022, 28, 5254-5268.	9.5	24
128	Dryâ€season decline in tree sapflux is correlated with leaf turgor loss point in a tropical rainforest. Functional Ecology, 2018, 32, 2285-2297.	3.6	22
129	Unraveling the biogeographical history of Chrysobalanaceae from plastid genomes. American Journal of Botany, 2016, 103, 1089-1102.	1.7	20
130	New formula and conversion factor to compute basic wood density of tree species using a global wood technology database. American Journal of Botany, 2018, 105, 1653-1661.	1.7	19
131	A global map of root biomass across the world's forests. Earth System Science Data, 2021, 13, 4263-4274.	9.9	19
132	High foliar K and P resorption efficiencies in oldâ€growth tropical forests growing on nutrientâ€poor soils. Ecology and Evolution, 2021, 11, 8969-8982.	1.9	18
133	Spatial and Biological Aspects of Reserve Design. Environmental Modeling and Assessment, 2002, 7, 115-122.	2.2	17
134	A simulation method to infer tree allometry and forest structure from airborne laser scanning and forest inventories. Remote Sensing of Environment, 2020, 251, 112056.	11.0	17
135	Coping with branch excision when measuring leaf net photosynthetic rates in a lowland tropical forest. Biotropica, 2020, 52, 608-615.	1.6	17
136	Widespread Occurrence of Bd in French Guiana, South America. PLoS ONE, 2015, 10, e0125128.	2.5	16
137	Slow rate of secondary forest carbon accumulation in the Guianas compared with the rest of the Neotropics. Ecological Applications, 2020, 30, e02004.	3.8	16
138	Latent Dirichlet Allocation reveals spatial and taxonomic structure in a DNAâ€based census of soil biodiversity from a tropical forest. Molecular Ecology Resources, 2020, 20, 371-386.	4.8	16
139	A test of community assembly rules using foliar endophytes from a tropical forest canopy. Journal of Ecology, 2020, 108, 1605-1616.	4.0	16
140	Quantifying Tropical Plant Diversity Requires an Integrated Technological Approach. Trends in Ecology and Evolution, 2020, 35, 1100-1109.	8.7	16
141	Changes of species diversity in a simulated fragmented neutral landscape. Ecological Modelling, 2007, 207, 3-10.	2.5	15
142	Inferring neutral biodiversity parameters using environmental DNA data sets. Scientific Reports, 2016, 6, 35644.	3.3	13
143	Decadal Lake Volume Changes (2003–2020) and Driving Forces at a Global Scale. Remote Sensing, 2022, 14, 1032.	4.0	13
144	Climatic and biotic factors influencing regional declines and recovery of tropical forest biomass from the 2015/16 El Niño. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13

#	Article	IF	CITATIONS
145	Towards a theoretical basis for ecosystem conservation. Ecological Research, 2001, 16, 983-995.	1.5	12
146	Variations of carbon allocation and turnover time across tropical forests. Global Ecology and Biogeography, 2021, 30, 1271-1285.	5.8	12
147	The hyperdominant tropical tree Eschweilera coriacea (Lecythidaceae) shows higher genetic heterogeneity than sympatric Eschweilera species in French Guiana. Plant Ecology and Evolution, 2020, 153, 67-81.	0.7	12
148	Multi-taxa environmental DNA inventories reveal distinct taxonomic and functional diversity in urban tropical forest fragments. Global Ecology and Conservation, 2021, 29, e01724.	2.1	11
149	Detecting Human Presence and Influence on Neotropical Forests with Remote Sensing. Remote Sensing, 2018, 10, 1593.	4.0	10
150	Strong floristic distinctiveness across Neotropical successional forests. Science Advances, 2022, 8, .	10.3	10
151	Monitoring Strategy for Eight Amphibian Species in French Guiana, South America. PLoS ONE, 2013, 8, e67486.	2.5	9
152	Mapping tropical forest trees across large areas with lightweight cost-effective terrestrial laser scanning. Annals of Forest Science, 2021, 78, .	2.0	8
153	Rapid diversification rates in Amazonian Chrysobalanaceae inferred from plastid genome phylogenetics. Botanical Journal of the Linnean Society, 2020, 194, 271-289.	1.6	7
154	Dynamics and persistence in a metacommunity centred on the plant <i><scp>A</scp>ntirrhinum majus</i> : theoretical predictions and an empirical test. Journal of Ecology, 2016, 104, 456-468.	4.0	6
155	The Influence of Prior Learning Experience on Pollinator Choice: An Experiment Using Bumblebees on Two Wild Floral Types of Antirrhinum majus. PLoS ONE, 2015, 10, e0130225.	2.5	6
156	Vertical profiles of leaf photosynthesis and leaf traits and soil nutrients in two tropical rainforests in French Guiana before and after a 3-year nitrogen and phosphorus addition experiment. Earth System Science Data, 2022, 14, 5-18.	9.9	6
157	Isolation and Identification of Isocoumarin Derivatives With Specific Inhibitory Activity Against Wnt Pathway and Metabolome Characterization of Lasiodiplodia venezuelensis. Frontiers in Chemistry, 2021, 9, 664489.	3.6	5
158	Andean orogeny and the diversification of lowland neotropical rain forest trees: A case study in Sapotaceae. Global and Planetary Change, 2021, 201, 103481.	3.5	3
159	Can lightâ€saturated photosynthesis in lowland tropical forests be estimated by one light level?. Biotropica, 2020, 52, 1183-1193.	1.6	2
160	Environmental determinants of leaf litter ant community composition along an elevational gradient. Biotropica, 2021, 53, 97-109.	1.6	2
161	Transferability of an individual- and trait-based forest dynamics model: A test case across the tropics. Ecological Modelling, 2022, 463, 109801.	2.5	1
162	Quantitative morphometrics suggest that the widespread Neotropical Humiria balsamifera (Aubl.) St. Hil. is a species complex. Acta Botanica Brasilica, 2021, 35, 339-351.	0.8	0

#	Article	IF	CITATIONS
163	Fast and novel botanical exploration of a 320-km transect in eastern Amazonia using DNA barcoding. Acta Amazonica, 2022, 52, 29-37.	0.7	0