
Michael R Rose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6111917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-Term Experimental Evolution in Escherichia coli. I. Adaptation and Divergence During 2,000 Generations. American Naturalist, 1991, 138, 1315-1341.	1.0	1,441
2	LABORATORY EVOLUTION OF POSTPONED SENESCENCE IN <i>DROSOPHILA MELANOGASTER</i> . Evolution; International Journal of Organic Evolution, 1984, 38, 1004-1010.	1.1	546
3	Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature, 2010, 467, 587-590.	13.7	410
4	GENETICS OF LIFE HISTORY IN <i>DROSOPHILA MELANOGASTER</i> . II. EXPLORATORY SELECTION EXPERIMENTS. Genetics, 1981, 97, 187-196.	1.2	394
5	Antagonistic pleiotropy, dominance, and genetic variation. Heredity, 1982, 48, 63-78.	1.2	385
6	Laboratory Evolution of Postponed Senescence in Drosophila melanogaster. Evolution; International Journal of Organic Evolution, 1984, 38, 1004.	1.1	376
7	Phenotypic plasticity and selection in Drosophila life-history evolution. I. Nutrition and the cost of reproduction. Journal of Evolutionary Biology, 1993, 6, 171-193.	0.8	375
8	A test of evolutionary theories of senescence. Nature, 1980, 287, 141-142.	13.7	337
9	Hormones and the Physiological Architecture of Life History Evolution. Quarterly Review of Biology, 1995, 70, 1-52.	0.0	321
10	Selection on stress resistance increases longevity in Drosophila melanogaster. Experimental Gerontology, 1992, 27, 241-250.	1.2	292
11	GENETIC COVARIATION AMONG LIFE-HISTORY COMPONENTS: THE EFFECT OF NOVEL ENVIRONMENTS. Evolution; International Journal of Organic Evolution, 1985, 39, 943-945.	1.1	263
12	Experimental Evolution. , 2009, , .		175
13	COMPLEX TRADE-OFFS AND THE EVOLUTION OF STARVATION RESISTANCE IN <i>DROSOPHILA MELANOGASTER</i> . Evolution; International Journal of Organic Evolution, 1996, 50, 753-766.	1.1	169
14	Variation in the reversibility of evolution. Nature, 2000, 408, 463-466.	13.7	160
15	RESOURCE ACQUISITION AND THE EVOLUTION OF STRESS RESISTANCE IN <i>DROSOPHILA MELANOGASTER </i> . Evolution; International Journal of Organic Evolution, 1998, 52, 1342-1352.	1.1	150
16	Experimental evolution reveals natural selection on standing genetic variation. Nature Genetics, 2009, 41, 251-257.	9.4	143
17	Genetic Covariation in Drosophila Life History: Untangling the Data. American Naturalist, 1984, 123, 565-569.	1.0	136
18	Complex Trade-Offs and the Evolution of Starvation Resistance in Drosophila melanogaster. Evolution; International Journal of Organic Evolution, 1996, 50, 753.	1.1	123

#	Article	IF	CITATIONS
19	DOES SELECTION FOR STRESS RESISTANCE LOWER METABOLIC RATE?. Ecology, 1997, 78, 828-837.	1.5	122
20	EXPERIMENTAL EVOLUTION OF ACCELERATED DEVELOPMENT IN <i>DROSOPHILA.</i> 1. DEVELOPMENTAL SPEED AND LARVAL SURVIVAL. Evolution; International Journal of Organic Evolution, 1997, 51, 1536-1551.	1.1	111
21	Genetic Covariation Among Life-History Components: The Effect of Novel Environments. Evolution; International Journal of Organic Evolution, 1985, 39, 943.	1.1	110
22	PERSPECTIVE: REVERSE EVOLUTION. Evolution; International Journal of Organic Evolution, 2001, 55, 653.	1.1	105
23	High-frequency genomic rearrangements involving archaebacterial repeat sequence elements. Nature, 1982, 299, 182-185.	13.7	103
24	HAMILTON'S FORCES OF NATURAL SELECTION AFTER FORTY YEARS. Evolution; International Journal of Organic Evolution, 2007, 61, 1265-1276.	1.1	94
25	The Gompertz equation as a predictive tool in demography. Experimental Gerontology, 1995, 30, 553-569.	1.2	92
26	LONG-TERM LABORATORY EVOLUTION OF A GENETIC LIFE-HISTORY TRADE-OFF IN <i>DROSOPHILA MELANOGASTER</i> . 1. THE ROLE OF GENOTYPE-BY-ENVIRONMENT INTERACTION. Evolution; International Journal of Organic Evolution, 1994, 48, 1244-1257.	1.1	86
27	EVOLUTION OF LATE-LIFE MORTALITY IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2002, 56, 1982-1991.	1.1	85
28	Experimental Evolution of Accelerated Development in Drosophila. 1. Developmental Speed and Larval Survival. Evolution; International Journal of Organic Evolution, 1997, 51, 1536.	1.1	79
29	HOW REPEATABLE IS ADAPTIVE EVOLUTION? THE ROLE OF GEOGRAPHICAL ORIGIN AND FOUNDER EFFECTS IN LABORATORY ADAPTATION. Evolution; International Journal of Organic Evolution, 2008, 62, 1817-1829.	1.1	79
30	THE EVOLUTION OF DEVELOPMENT IN <i>DROSOPHILA MELANOGASTER</i> SELECTED FOR POSTPONED SENESCENCE. Evolution; International Journal of Organic Evolution, 1994, 48, 1880-1899.	1.1	78
31	Theories of Life-History Evolution. American Zoologist, 1983, 23, 15-23.	0.7	74
32	What is Aging?. Frontiers in Genetics, 2012, 3, 134.	1.1	67
33	Long-Term Laboratory Evolution of a Genetic Life-History Trade-Off in Drosophila melanogaster. 1. The Role of Genotype-by-Environment Interaction. Evolution; International Journal of Organic Evolution, 1994, 48, 1244.	1.1	64
34	The new biology: beyond the Modern Synthesis. Biology Direct, 2007, 2, 30.	1.9	62
35	The effect of superoxide dismutase alleles on aging inDrosophila. Genetica, 1993, 91, 143-149.	0.5	61
36	Testing the heterogeneity theory of late-life mortality plateaus by using cohorts of Drosophila melanogaster. Experimental Gerontology, 2000, 35, 71-84.	1.2	59

#	Article	IF	CITATIONS
37	The morphology of postponed senescence in <i>Drosophila melanogaster</i> . Canadian Journal of Zoology, 1984, 62, 1576-1580.	0.4	58
38	LONG-TERM LABORATORY EVOLUTION OF A GENETIC LIFE-HISTORY TRADE-OFF IN <i>DROSOPHILA MELANOGASTER</i> . 2. STABILITY OF GENETIC CORRELATIONS. Evolution; International Journal of Organic Evolution, 1994, 48, 1258-1268.	1.1	44
39	Do longevity mutants always show trade-offs?. Experimental Gerontology, 2006, 41, 1055-1058.	1.2	43
40	Genome-Wide Association Study of Extreme Longevity in Drosophila melanogaster. Genome Biology and Evolution, 2014, 6, 1-11.	1.1	42
41	The evolution of late life. Ageing Research Reviews, 2006, 5, 14-32.	5.0	41
42	Evolutionary patterns among measures of aging. Experimental Gerontology, 1996, 31, 507-516.	1.2	40
43	Statistical tests of demographic heterogeneity theories. Experimental Gerontology, 2003, 38, 373-386.	1.2	39
44	Pioglitazone: an anti-diabetic compound with anti-aging properties. Biogerontology, 2007, 8, 639-651.	2.0	39
45	Lifelong heterogeneity in fecundity is insufficient to explain late-life fecundity plateaus in Drosophila melanogaster. Experimental Gerontology, 2005, 40, 660-670.	1.2	38
46	ARTIFICIAL SELECTION ON A FITNESS-COMPONENT IN <i>DROSOPHILA MELANOGASTER</i> . Evolution; International Journal of Organic Evolution, 1984, 38, 516-526.	1.1	36
47	THE SYMMETRY OF CORRELATED SELECTION RESPONSES IN ADAPTIVE EVOLUTION: AN EXPERIMENTAL STUDY USING <i>DROSOPHILA</i> . Evolution; International Journal of Organic Evolution, 1997, 51, 163-172.	1.1	36
48	Aging, fertility, and immortality. Experimental Gerontology, 2003, 38, 27-33.	1.2	36
49	Rapid divergence and convergence of lifeâ€history in experimentally evolved <i>Drosophila melanogaster</i> . Evolution; International Journal of Organic Evolution, 2016, 70, 2085-2098.	1.1	35
50	Adaptation, aging, and genomic information. Aging, 2009, 1, 444-450.	1.4	35
51	Laboratory Selection Quickly Erases Historical Differentiation. PLoS ONE, 2014, 9, e96227.	1.1	33
52	A revolution for aging research. Biogerontology, 2006, 7, 269-277.	2.0	32
53	Evolution of ageing since Darwin. Journal of Genetics, 2008, 87, 363-371.	0.4	32
54	Two-dimensional protein electrophoretic analysis of postponed aging inDrosophila. Genetica, 1993, 91, 183-198.	0.5	31

#	Article	IF	CITATIONS
55	The Respiratory Pattern in Drosophila melanogaster Selected for Desiccation Resistance Is Not Associated with the Observed Evolution of Decreased Locomotory Activity. Physiological and Biochemical Zoology, 2004, 77, 10-17.	0.6	30
56	Experimental Evolution of Accelerated Development in <i>Drosophila</i> . 2. Adult Fitness and the Fast Development Syndrome. , 2004, , 413-435.		28
57	Genetics of increased lifespan in drosophila. BioEssays, 1989, 11, 132-135.	1.2	27
58	Ageing and immortality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1657-1662.	1.8	27
59	Evolution of larval foraging behaviour in Drosophila and its effects on growth and metabolic rates. Physiological Entomology, 2005, 30, 262-269.	0.6	27
60	CONVERGENCE TO A NOVEL ENVIRONMENT: COMPARATIVE METHOD VERSUSEXPERIMENTAL EVOLUTION. Evolution; International Journal of Organic Evolution, 2004, 58, 1503-1510.	1.1	26
61	Convergence to a novel environment: comparative method versus experimental evolution. Evolution; International Journal of Organic Evolution, 2004, 58, 1503-10.	1.1	24
62	Late Life: A New Frontier for Physiology. Physiological and Biochemical Zoology, 2005, 78, 869-878.	0.6	23
63	Rules for the use of model organisms in antiaging pharmacology. Aging Cell, 2006, 5, 17-22.	3.0	22
64	An evolutionary no man's land. Trends in Ecology and Evolution, 2000, 15, 206.	4.2	21
65	Paradoxical Physiological Transitions from Aging to Late Life in <i>Drosophila</i> . Rejuvenation Research, 2012, 15, 49-58.	0.9	21
66	Predictable phenotypic, but not karyotypic, evolution of populations with contrasting initial history. Scientific Reports, 2017, 7, 913.	1.6	20
67	Evolutionary dynamics of molecular markers during local adaptation: a case study in Drosophila subobscura. BMC Evolutionary Biology, 2008, 8, 66.	3.2	19
68	ALLOZYMIC DIFFERENTIATION IN RESPONSE TO LABORATORY DEMOGRAPHIC SELECTION OF <i>DROSOPHILA MELANOGASTER </i> . Evolution; International Journal of Organic Evolution, 1997, 51, 865-872.	1.1	18
69	Mutation Accumulation Affects Male Virility in <i>Drosophila</i> Selected for Later Reproduction. Physiological and Biochemical Zoology, 2007, 80, 461-472.	0.6	18
70	Long-Term Functional Side-Effects of Stimulants and Sedatives in Drosophila melanogaster. PLoS ONE, 2009, 4, e6578.	1.1	18
71	New Experiments for an Undivided Genetics. Genetics, 2011, 188, 1-10.	1.2	18
72	Genome-wide analysis of long-term evolutionary domestication in Drosophila melanogaster. Scientific Reports, 2016, 6, 39281.	1.6	18

#	Article	IF	CITATIONS
73	Does Aging Stop?. Current Aging Science, 2009, 2, 3-11.	0.4	17
74	Allozymic Differentiation in Response to Laboratory Demographic Selection of Drosophila melanogaster. Evolution; International Journal of Organic Evolution, 1997, 51, 865.	1.1	16
75	Ageing: The Many-Headed Monster. Current Biology, 2002, 12, R311-R312.	1.8	16
76	Effects of evolutionary history on genome wide and phenotypic convergence in Drosophila populations. BMC Genomics, 2018, 19, 743.	1.2	16
77	Evolution of human lifespan: Past, future, and present. , 1998, 10, 409-420.		15
78	Fast evolutionary genetic differentiation during experimental colonizations. Journal of Genetics, 2013, 92, 183-194.	0.4	15
79	Genome-Wide Mapping of Gene–Phenotype Relationships in Experimentally Evolved Populations. Molecular Biology and Evolution, 2018, 35, 2085-2095.	3.5	14
80	EVOLUTION OF LATE-LIFE MORTALITY IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2002, 56, 1982.	1.1	13
81	Prospects for postponing human aging. FASEB Journal, 1994, 8, 925-928.	0.2	12
82	Effective population size and evolutionary dynamics in outbred laboratory populations of Drosophila. Journal of Genetics, 2013, 92, 349-361.	0.4	12
83	Drosophila transcriptomics with and without ageing. Biogerontology, 2019, 20, 699-710.	2.0	12
84	Pharmacology, Genomics, and the Evolutionary Biology of Ageing. Free Radical Research, 2002, 36, 1293-1297.	1.5	11
85	Genomic Croesus: Experimental evolutionary genetics of Drosophila aging. Experimental Gerontology, 2011, 46, 397-403.	1.2	11
86	Making SENSE: Strategies for Engineering Negligible Senescence Evolutionarily. Rejuvenation Research, 2008, 11, 527-534.	0.9	9
87	Brief Early-Life Non-Specific Incorporation of Deuterium Extends Mean Life Span in <i>Drosophila melanogaster</i> Without Affecting Fecundity. Rejuvenation Research, 2013, 16, 98-104.	0.9	9
88	How phenotypic convergence arises in experimental evolution. Evolution; International Journal of Organic Evolution, 2019, 73, 1839-1849.	1.1	9
89	Adaptive and nonadaptive explanations of sociopathy. Behavioral and Brain Sciences, 1995, 18, 566-567.	0.4	8
90	Phenotypic plasticity and selection in Drosophila life-history evolution. I. Nutrition and the cost of		8

reproduction. , 2004, , 122-144.

8

#	Article	IF	CITATIONS
91	The janiform genetics of aging. Genetica, 1993, 91, 3-10.	0.5	6
92	PHYSIOLOGICAL MECHANISMS OF EVOLVED DESICCATION RESISTANCE IN DROSOPHILA MELANOGASTER. , 2004, , 89-100.		6
93	Starvation but not locomotion enhances heart robustness in Drosophila. Journal of Insect Physiology, 2017, 99, 8-14.	0.9	6
94	Experimental Evolution and Heart Function in <i>Drosophila</i> . Physiological and Biochemical Zoology, 2017, 90, 281-293.	0.6	6
95	Diet and Botanical Supplementation: Combination Therapy for Healthspan Improvement?. Rejuvenation Research, 2021, 24, 331-344.	0.9	6
96	Hamiltonian patterns of age-dependent adaptation to novel environments. PLoS ONE, 2020, 15, e0240132.	1.1	6
97	Electrophoretic Analysis of Methuselah Flies from Multiple Species. , 2004, , 237-248.		5
98	PERSPECTIVE: REVERSE EVOLUTION. Evolution; International Journal of Organic Evolution, 2001, 55, 653-660.	1.1	5
99	An Evolutionary and Genomic Approach to Challenges and Opportunities for Eliminating Aging. Current Aging Science, 2014, 7, 54-59.	0.4	5
100	The death spiral: predicting death in Drosophila cohorts. Biogerontology, 2016, 17, 805-816.	2.0	5
101	Metabolic Aspects of the Trade-Off between Fecundity and Longevity in <i>Drosophila melanogaster</i> ., 2004, , 145-164.		4
102	The Creation of Methuselah Flies by Laboratory Evolution. , 2004, , 3-9.		4
103	The Great Evolutionary Divide: Two Genomic Systems Biologies of Aging. Interdisciplinary Topics in Gerontology, 2014, 40, 63-73.	3.6	4
104	Four steps toward the control of aging: following the example of infectious disease. Biogerontology, 2016, 17, 21-31.	2.0	4
105	THE EVOLUTION OF DEVELOPMENT IN <i>DROSOPHILA MELANOGASTER</i> SELECTED FOR POSTPONED SENESCENCE. , 2004, , 370-389.		3
106	Patterns of physiological decline due to age and selection in <i>Drosophila melanogaster</i> . Evolution; International Journal of Organic Evolution, 2016, 70, 2550-2561.	1.1	3
107	An Evolutionary Analysis of Healthspan Extension Using Diet: Have We Come to the End of the Ponce de Leon Trail?. Healthy Ageing and Longevity, 2015, , 265-283.	0.2	3
108	CONVERGENCE TO A NOVEL ENVIRONMENT: COMPARATIVE METHOD VERSUS EXPERIMENTAL EVOLUTION. Evolution; International Journal of Organic Evolution, 2004, 58, 1503.	1.1	2

#	Article	IF	CITATIONS
109	Reverse Evolution of Aging. , 2004, , 251-254.		2
110	Research in the Biology of Ageing. Ageing and Society, 1997, 17, 65-74.	1.2	1
111	Once more with feeling. Journal of Evolutionary Biology, 2001, 14, 519-519.	0.8	1
112	Reproduction, Nutrition, and Aging. , 2004, , 117-121.		1
113	The evolution of death: why we are aging longer, by Stanley Shostak. Evolution & Development, 2007, 9, 203-204.	1.1	1
114	Gods Inside. , 0, , 279-287.		1
115	An Evolutionary Analysis of Health. Healthy Ageing and Longevity, 2020, , 13-34.	0.2	1
116	Evolution and Physiology: <i>Evolutionary Genetics and Environmental Stress</i> . Ary A. Hoffmann and Peter A. Parsons. Oxford University Press, New York, 1991. X, 284 pp., illus. \$75 Science, 1991, 254, 448-448.	6.0	1
117	David W. E. Smith, Human Longevity, Oxford University Press, New York and Oxford, 1993, 175 pp., £27.50, ISBN 0 195 08313 X Ageing and Society, 1994, 14, 641-642.	1.2	0
118	Quantitative Genetics of Postponed Aging in <i>Drosophila melanogaster</i> . I. Analysis of Outbred Populations. , 2004, , 17-25.		0
119	EVOLUTIONARY PATTERNS AMONG MEASURES OF AGING. , 2004, , 40-49.		0
120	Increasing Stress Resistance Often Postpones Aging. , 2004, , 53-57.		0
121	SELECTION ON STRESS RESISTANCE INCREASES LONGEVITY IN DROSOPHILA MELANOGASTER. , 2004, , 68-77.		0
122	Metabolic Reserves and Evolved Stress Resistance in <i>Drosophila melanogaster</i> . , 2004, , 78-88.		0
123	Two-dimensional protein electrophoretic analysis of postponed aging in Drosophila. , 2004, , 205-220.		0
124	Variation in the reversibility of evolution. , 2004, , 283-285.		0
125	Aging, Development, and Crowding. , 2004, , 355-358.		0
126	EXPERIMENTAL EVOLUTION OF ACCELERATED DEVELOPMENT IN DROSOPHILA. 1. DEVELOPMENTAL SPEED		0

AND LARVAL SURVIVAL. , 2004, , 390-405.

#	Article	IF	CITATIONS
127	LABORATORY EVOLUTION OF POSTPONED SENESCENCE IN DROSOPHILA MELANOGASTER. , 2004, , 10-16.		Ο
128	Ageing: life begins at 90. New Scientist, 2011, 211, 42-45.	0.0	0
129	A Hamiltonian Demography of Life History. , 0, , 40-55.		Ο
130	Notes Toward an Evolutionary Biology of Nutrition. Healthy Ageing and Longevity, 2021, , 123-151.	0.2	0
131	ALLOZYMIC DIFFERENTIATION IN RESPONSE TO LABORATORY DEMOGRAPHIC SELECTION OF DROSOPHILA MELANOGASTER. , 2004, , 221-228.		0
132	The effect of superoxide dismutase alleles on aging in Drosophila. , 2004, , 198-204.		0
133	Increased hsp22 RNA Levels in Drosophila Lines Genetically Selected for Increased Longevity. , 2004, , 229-236.		0
134	Evolution and Physiology: Evolutionary Genetics and Environmental Stress . Ary A. Hoffmann and Peter A. Parsons. Oxford University Press, New York, 1991. X, 284 pp., illus. \$75 Science, 1991, 254, 448-448.	6.0	0

9