
John Foulkes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6111803/publications.pdf Version: 2024-02-01

IOHN FOLLERS

#	Article	IF	CITATIONS
1	Raising yield potential in wheat. Journal of Experimental Botany, 2009, 60, 1899-1918.	2.4	508
2	Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. Journal of Experimental Botany, 2011, 62, 469-486.	2.4	474
3	Achieving yield gains in wheat. Plant, Cell and Environment, 2012, 35, 1799-1823.	2.8	459
4	Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Research, 2009, 114, 329-342.	2.3	316
5	Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars. Field Crops Research, 2014, 155, 213-223.	2.3	244
6	Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Research, 2011, 123, 139-152.	2.3	243
7	Modelling Cereal Root Systems for Water and Nitrogen Capture: Towards an Economic Optimum. Annals of Botany, 2003, 91, 383-390.	1.4	213
8	Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. Journal of Experimental Botany, 2015, 66, 2283-2292.	2.4	196
9	Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs. Journal of Experimental Botany, 2011, 62, 3621-3636.	2.4	193
10	The Physiological Basis of the Genetic Progress in Yield Potential of CIMMYT Spring Wheat Cultivars from 1966 to 2009. Crop Science, 2015, 55, 1749-1764.	0.8	165
11	Breeding for increased nitrogenâ€use efficiency: a review for wheat (<i><scp>T</scp>.Âaestivum) Tj ETQq1 1 C</i>).784314 rg 1.0	gBT_/Overlock 164
12	Tackling Drought Stress: RECEPTOR-LIKE KINASES Present New Approaches. Plant Cell, 2012, 24, 2262-2278.	3.1	155
13	Leaf photosynthesis and associations with grain yield, biomass and nitrogen-use efficiency in landraces, synthetic-derived lines and cultivars in wheat. Field Crops Research, 2016, 193, 1-15.	2.3	128
14	Dissecting geneÂ×Âenvironmental effects on wheat yields via QTL and physiological analysis. Euphytica, 2007, 154, 401-408.	0.6	125
15	Quantifying how winter wheat crops accumulate and use nitrogen reserves during growth. Field Crops Research, 2012, 126, 104-118.	2.3	102
16	Foliar pathogenesis and plant water relations: a review. Journal of Experimental Botany, 2012, 63, 4321-4331.	2.4	100
17	Is barley yield in the UK sink limited?. Field Crops Research, 2007, 101, 198-211.	2.3	89
18	Effects of a photoperiod-response gene Ppd-D1 on yield potential and drought resistance in UK winter wheat. Euphytica, 2004, 135, 63-73.	0.6	85

John Foulkes

#	Article	IF	CITATIONS
19	Optimizing dry-matter partitioning for increased spike growth, grain number and harvest index in spring wheat. Field Crops Research, 2019, 240, 154-167.	2.3	82
20	Identification of Differentially Senescing Mutants of Wheat and Impacts on Yield, Biomass and Nitrogen Partitioning ^F . Journal of Integrative Plant Biology, 2012, 54, 555-566.	4.1	81
21	Relationships between Large‧pike Phenotype, Grain Number, and Yield Potential in Spring Wheat. Crop Science, 2009, 49, 961-973.	0.8	76
22	Addressing Research Bottlenecks to Crop Productivity. Trends in Plant Science, 2021, 26, 607-630.	4.3	76
23	An analysis of dormancy, ABA responsiveness, after-ripening and pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.) caryopses. Journal of Experimental Botany, 2010, 61, 597-607.	2.4	75
24	Suboptimal Acclimation of Photosynthesis to Light in Wheat Canopies. Plant Physiology, 2018, 176, 1233-1246.	2.3	67
25	High-Resolution Three-Dimensional Structural Data Quantify the Impact of Photoinhibition on Long-Term Carbon Gain in Wheat Canopies in the Field. Plant Physiology, 2015, 169, 1192-1204.	2.3	61
26	Is barley yield in the UK sink limited?. Field Crops Research, 2007, 101, 212-220.	2.3	59
27	Simulation of environmental and genotypic variations of final leaf number and anthesis date for wheat. European Journal of Agronomy, 2012, 42, 22-33.	1.9	56
28	Acclimation of Leaf Nitrogen to Vertical Light Gradient at Anthesis in Wheat Is a Whole-Plant Process That Scales with the Size of the Canopy Â. Plant Physiology, 2012, 160, 1479-1490.	2.3	54
29	Quantifying relationships between rooting traits and water uptake under drought in Mediterranean barley and durum wheat. Journal of Integrative Plant Biology, 2014, 56, 455-469.	4.1	53
30	Effects of drought and the presence of the 1BL/1RS translocation on grain vitreosity, hardness and protein content in winter wheat. Journal of Cereal Science, 2008, 47, 457-468.	1.8	50
31	Identifying wheat genomic regions for improving grain protein concentration independently of grain yield using multiple inter-related populations. Molecular Breeding, 2013, 31, 587-599.	1.0	49
32	Relationships between physiological traits, grain number and yield potential in a wheat DH population of large spike phenotype. Field Crops Research, 2014, 164, 126-135.	2.3	27
33	A wiring diagram to integrate physiological traits of wheat yield potential. Nature Food, 2022, 3, 318-324.	6.2	27
34	Genetic Improvement of Grain Crops. , 2009, , 355-385.		26
35	Linear discriminant analysis reveals differences in root architecture in wheat seedlings related to nitrogen uptake efficiency. Journal of Experimental Botany, 2017, 68, 4969-4981.	2.4	26
36	Estimating Organ Contribution to Grain Filling and Potential for Source Upregulation in Wheat Cultivars with a Contrasting Source–Sink Balance. Agronomy, 2020, 10, 1527.	1.3	22

John Foulkes

#	Article	IF	CITATIONS
37	Identification of Wheat Cultivars for Low Nitrogen Tolerance Using Multivariable Screening Approaches. Agronomy, 2020, 10, 417.	1.3	18
38	Integrating genetic information into plant breeding programmes: how will we produce varieties from molecular variation, using bioinformatics?. Annals of Applied Biology, 2005, 146, 223-237.	1.3	17
39	Relationships between δ 13 C, δ 18 O and grain yield in bread wheat genotypes under favourable irrigated and rain-fed conditions. Field Crops Research, 2016, 196, 237-250.	2.3	16
40	Identifying quantitative trait loci for lodgingâ€associated traits in the wheat doubledâ€haploid population Avalon × Cadenza. Crop Science, 2021, 61, 2371-2386.	0.8	14
41	Exploring genetic diversity for grain partitioning traits to enhance yield in a high biomass spring wheat panel. Field Crops Research, 2021, 260, 107979.	2.3	13
42	Xâ€ r ay CT reveals 4D root system development and lateral root responses to nitrate in soil. The Plant Phenome Journal, 2022, 5, .	1.0	13
43	Wheat lines exhibiting variation in tolerance of Septoria tritici blotch differentiated by grain source limitation. Field Crops Research, 2018, 217, 1-10.	2.3	12
44	Early root and aboveground biomass development of hybrid poplars (<i>Populus</i> spp.) under drought conditions. Canadian Journal of Forest Research, 2015, 45, 1289-1298.	0.8	11
45	Field-based remote sensing models predict radiation use efficiency in wheat. Journal of Experimental Botany, 2021, 72, 3756-3773.	2.4	11
46	Multi-trait genomic prediction using in-season physiological parameters increases prediction accuracy of complex traits in US wheat. BMC Genomics, 2022, 23, 298.	1.2	10
47	Identification of novel quantitative trait loci for resistance to Fusarium seedling blight caused by Microdochium majus and M. nivale in wheat. Field Crops Research, 2016, 191, 1-12.	2.3	4
48	Prediction of Photosynthetic, Biophysical, and Biochemical Traits in Wheat Canopies to Reduce the Phenotyping Bottleneck. Frontiers in Plant Science, 2022, 13, 828451.	1.7	4
49	Identifying variation for N-use efficiency and associated traits in amphidiploids derived from hybrids of bread wheat and the genera Aegilops, Secale, Thinopyrum and Triticum. PLoS ONE, 2022, 17, e0266924.	1.1	4