
Carles Pelejero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6110804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Geological Record of Ocean Acidification. Science, 2012, 335, 1058-1063.	6.0	828
2	East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. Marine Geology, 1999, 156, 245-284.	0.9	636
3	Dansgaard-Oeschger and Heinrich event imprints in Alboran Sea paleotemperatures. Paleoceanography, 1999, 14, 698-705.	3.0	527
4	Preindustrial to Modern Interdecadal Variability in Coral Reef pH. Science, 2005, 309, 2204-2207.	6.0	186
5	High-resolution UK37temperature reconstructions in the South China Sea over the past 220 kyr. Paleoceanography, 1999, 14, 224-231.	3.0	174
6	Paleo-perspectives on ocean acidification. Trends in Ecology and Evolution, 2010, 25, 332-344.	4.2	157
7	Long-term sea surface temperature and climate change in the Australian-New Zealand region. Paleoceanography, 2007, 22, .	3.0	148
8	Identification and removal of Mn-Mg-rich contaminant phases on foraminiferal tests: Implications for Mg/Ca past temperature reconstructions. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	1.0	143
9	Effects of climate change on Mediterranean marine ecosystems: the case of the Catalan Sea. Climate Research, 2011, 50, 1-29.	0.4	137
10	The correlation between the 37k index and sea surface temperatures in the warm boundary: The South China Sea. Geochimica Et Cosmochimica Acta, 1997, 61, 4789-4797.	1.6	118
11	Clean-up procedures for the unbiased estimation of C37 alkenone sea surface temperatures and terrigenous n-alkane inputs in paleoceanography. Journal of Chromatography A, 1997, 757, 145-151.	1.8	105
12	Dust-induced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles. Paleoceanography, 2004, 19, n/a-n/a.	3.0	96
13	Antarctic deglacial pattern in a 30 kyr record of sea surface temperature offshore South Australia. Geophysical Research Letters, 2007, 34, .	1.5	93
14	Holocene variations in Asian monsoon moisture: A bidecadal sediment record from the South China Sea. Geophysical Research Letters, 1999, 26, 2889-2892.	1.5	92
15	The flooding of Sundaland during the last deglaciation: imprints in hemipelagic sediments from the southern South China Sea. Earth and Planetary Science Letters, 1999, 171, 661-671.	1.8	88
16	Detrimental effects of ocean acidification on the economically important Mediterranean red coral (<i><scp>C</scp>orallium rubrum</i>). Global Change Biology, 2013, 19, 1897-1908.	4.2	83
17	Contrasting effects of ocean acidification on the microbial food web under different trophic conditions. ICES Journal of Marine Science, 2016, 73, 670-679.	1.2	76
18	Molecular biomarker record of sea surface temperature and climatic change in the South China Sea during the last 140,000 years. Marine Geology, 1999, 156, 109-121.	0.9	71

CARLES PELEJERO

#	Article	IF	CITATIONS
19	Synchroneity of meltwater pulse 1a and the BÃ _y lling warming: New evidence from the South China Sea. Geology, 2003, 31, 67.	2.0	71
20	Characterization of contaminant phases in foraminifera carbonates by electron microprobe mapping. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	71
21	Rapid changes in meridional advection of Southern Ocean intermediate waters to the tropical Pacific during the last 30kyr. Earth and Planetary Science Letters, 2013, 368, 20-32.	1.8	69
22	Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2. Nature Climate Change, 2016, 6, 483-487.	8.1	68
23	Precision of the current methods to measure the alkenone proxy U37K′and absolute alkenone abundance in sediments: Results of an interlaboratory comparison study. Geochemistry, Geophysics, Geosystems, 2001, 2, n/a-n/a.	1.0	66
24	The last 3000 years in the RÃa de Vigo (NW Iberian Margin): climatic and hydrographic signals. Holocene, 2002, 12, 459-468.	0.9	61
25	Water mass age and aging driving chromophoric dissolved organic matter in the dark global ocean. Global Biogeochemical Cycles, 2015, 29, 917-934.	1.9	60
26	Restructuring of the sponge microbiome favors tolerance to ocean acidification. Environmental Microbiology Reports, 2016, 8, 536-544.	1.0	60
27	South Tasman Sea alkenone palaeothermometry over the last four glacial/interglacial cycles. Marine Geology, 2006, 230, 73-86.	0.9	56
28	A critical review of marine sedimentaryĺ13Corg-pCO2estimates: New palaeorecords from the South China Sea and a revisit of other low-latitude Í13Corg-pCO2records. Global Biogeochemical Cycles, 2001, 15, 113-127.	1.9	53
29	Terrigenous n-alkane input in the South China Sea: high-resolution records and surface sediments. Chemical Geology, 2003, 200, 89-103.	1.4	53
30	Eastern Equatorial Pacific productivity and related-CO ₂ changes since the last glacial period. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5537-5541.	3.3	52
31	Differential response of two Mediterranean cold-water coral species to ocean acidification. Coral Reefs, 2014, 33, 675-686.	0.9	52
32	Response of rare, common and abundant bacterioplankton to anthropogenic perturbations in a Mediterranean coastal site. FEMS Microbiology Ecology, 2015, 91, .	1.3	49
33	Millennial surface water dynamics in the RÃa de Vigo during the last 3000 years as revealed by coccoliths and molecular biomarkers. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 218, 1-13.	1.0	48
34	An Enhanced Ocean Acidification Observing Network: From People to Technology to Data Synthesis and Information Exchange. Frontiers in Marine Science, 2019, 6, .	1.2	48
35	Interdecadal climate variability in the Coral Sea since 1708 A.D Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 248, 190-201.	1.0	47
36	C37 alkenone measurements of sea surface temperature in the Gulf of Lions (NW Mediterranean). Organic Geochemistry, 1999, 30, 557-566.	0.9	45

CARLES PELEJERO

#	Article	IF	CITATIONS
37	Sea surface paleotemperature errors in UK′37estimation due to alkenone measurements near the limit of detection. Paleoceanography, 2001, 16, 226-232.	3.0	44
38	The upper end of the UK′37temperature calibration revisited. Geochemistry, Geophysics, Geosystems, 2003, 4, .	1.0	43
39	Calcification reduction and recovery in native and non-native Mediterranean corals in response to ocean acidification. Journal of Experimental Marine Biology and Ecology, 2012, 438, 144-153.	0.7	34
40	Resistance of Two Mediterranean Cold-Water Coral Species to Low-pH Conditions. Water (Switzerland), 2014, 6, 59-67.	1.2	34
41	Increased reservoir ages and poorly ventilated deep waters inferred in the glacial Eastern Equatorial Pacific. Nature Communications, 2015, 6, 7420.	5.8	33
42	A latitudinal productivity band in the central North Atlantic over the last 270 kyr: An alkenone perspective. Paleoceanography, 2001, 16, 617-626.	3.0	30
43	Insolation dependence of the southeastern subtropical Pacific sea surface temperature over the last 400 kyrs. Geophysical Research Letters, 2001, 28, 2481-2484.	1.5	24
44	Copepod vital rates under CO ₂ -induced acidification: a calanoid species and a cyclopoid species under short-term exposures. Journal of Plankton Research, 2015, 37, 912-922.	0.8	23
45	Pressurized liquid extraction of selected molecular biomarkers in deep sea sediments used as proxies in paleoceanography. Journal of Chromatography A, 2003, 989, 197-205.	1.8	22
46	Coccolithophore calcification is independent of carbonate chemistry in the tropical ocean. Limnology and Oceanography, 2016, 61, 1345-1357.	1.6	19
47	Lack of evidence for elevated CO2-induced bottom-up effects on marine copepods: a dinoflagellate–calanoid prey–predator pair. ICES Journal of Marine Science, 2016, 73, 650-658.	1.2	19
48	Eutrophication and acidification: Do they induce changes in the dissolved organic matter dynamics in the coastal Mediterranean Sea?. Science of the Total Environment, 2016, 563-564, 179-189.	3.9	18
49	Annual response of two Mediterranean azooxanthellate temperate corals to low-pH and high-temperature conditions. Marine Biology, 2016, 163, 1.	0.7	18
50	The Evolution of Deep Ocean Chemistry and Respired Carbon in the Eastern Equatorial Pacific Over the Last Deglaciation. Paleoceanography, 2017, 32, 1371-1385.	3.0	16
51	Trends in anthropogenic CO2 in water masses of the Subtropical North Atlantic Ocean. Progress in Oceanography, 2015, 131, 21-32.	1.5	15
52	Varied contribution of the Southern Ocean to deglacial atmospheric CO2 rise. Nature Geoscience, 2019, 12, 1006-1011.	5.4	15
53	Sensitivity Effects inUkâ€~37Paleotemperature Estimation by Chemical Ionization Mass Spectrometry. Analytical Chemistry, 2000, 72, 5892-5897.	3.2	11
54	Marine Isotopic Stage 5e in the Southwest Pacific: Similarities with Antarctica and ENSO inferences. Geophysical Research Letters, 2003, 30, n/a-n/a.	1.5	11

CARLES PELEJERO

#	Article	IF	CITATIONS
55	Early deglacial CO2 release from the Sub-Antarctic Atlantic and Pacific oceans. Earth and Planetary Science Letters, 2021, 554, 116649.	1.8	10
56	Wind-induced changes in the dynamics of fluorescent organic matter in the coastal NW Mediterranean. Science of the Total Environment, 2017, 609, 1001-1012.	3.9	9
57	Using data mining and visualization techniques for the reconstruction of ocean paleodynamics. , 0, , .		8
58	Viral-Mediated Microbe Mortality Modulated by Ocean Acidification and Eutrophication: Consequences for the Carbon Fluxes Through the Microbial Food Web. Frontiers in Microbiology, 2021, 12, 635821.	1.5	8
59	Effects of low pH and feeding on calcification rates of the cold-water coral <i>Desmophyllum dianthus</i> . PeerJ, 2020, 8, e8236.	0.9	8
60	COVID-19 lockdown moderately increased oligotrophy at a marine coastal site. Science of the Total Environment, 2022, 812, 151443.	3.9	8
61	Ocean acidification along the 24.5°N section in the subtropical North Atlantic. Geophysical Research Letters, 2015, 42, 450-458.	1.5	7
62	Polyp flats, a new system for experimenting with jellyfish polyps, with insights into the effects of ocean acidification. Limnology and Oceanography: Methods, 2014, 12, 212-222.	1.0	5
63	Anthropogenic CO2 changes in the Equatorial Atlantic Ocean. Progress in Oceanography, 2015, 134, 256-270.	1.5	4
64	Controls on Primary Productivity in the Eastern Equatorial Pacific, East of the Galapagos Islands, During the Penultimate Deglaciation. Paleoceanography and Paleoclimatology, 2020, 35, e2019PA003777.	1.3	3
65	A 1â€Millionâ€Year Record of Environmental Change in the Central Mediterranean Sea From Organic Molecular Proxies. Paleoceanography and Paleoclimatology, 2021, 36, e2021PA004289.	1.3	3
66	Uncoupled seasonal variability of transparent exopolymer and Coomassie stainable particles in coastal Mediterranean waters. Elementa, 2021, 9, .	1.1	1
67	Elderfield, H. (ed.) The Oceans and Marine Geochemistry. Scientia Marina, 2007, 71, 207-208.	0.3	0
68	MÉS ENLLÀ DE L'ESCALFAMENT GLOBAL. Metode, 2020, , .	0.0	0