Behrang Keshavarz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6110689/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Visually Induced Motion Sickness Susceptibility Questionnaire (VIMSSQ): Estimating Individual Susceptibility to Motion Sickness-Like Symptoms When Using Visual Devices. Human Factors, 2023, 65, 107-124.	3.5	27
2	Motion sickness: current concepts and management. Current Opinion in Neurology, 2022, 35, 107-112.	3.6	35
3	Detecting and predicting visually induced motion sickness with physiological measures in combination with machine learning techniques. International Journal of Psychophysiology, 2022, 176, 14-26.	1.0	21
4	Comparing the Effect of Airflow Direction on Simulator Sickness and User Comfort in a High-Fidelity Driving Simulator. Lecture Notes in Computer Science, 2022, , 208-220.	1.3	0
5	The role of cognitive factors and personality traits in the perception of illusory self-motion (vection). Attention, Perception, and Psychophysics, 2021, 83, 1804-1817.	1.3	15
6	Predicting Individual Susceptibility to Visually Induced Motion Sickness by Questionnaire. Frontiers in Virtual Reality, 2021, 2, .	3.7	28
7	Motion sickness diagnostic criteria: Consensus Document of the Classification Committee of the Bárány Society. Journal of Vestibular Research: Equilibrium and Orientation, 2021, 31, 327-344.	2.0	46
8	Multisensory Effects on Illusory Self-Motion (Vection): the Role of Visual, Auditory, and Tactile Cues. Multisensory Research, 2021, 34, 869-890.	1.1	15
9	The effect of airflow on (visually induced) motion sickness during a simulated driving task. Journal of Vision, 2021, 21, 2786.	0.3	0
10	Virtual Hand Illusion in younger and older adults. Journal of Rehabilitation and Assistive Technologies Engineering, 2021, 8, 205566832110593.	0.9	1
11	Visually Induced Motion Sickness on the Horizon. Frontiers in Virtual Reality, 2020, 1, .	3.7	17
12	Neuropsychological Approaches to Visually-Induced Vection: an Overview and Evaluation of Neuroimaging and Neurophysiological Studies. Multisensory Research, 2020, 34, 153-186.	1.1	18
13	Examining potential effects of arousal, valence, and likability of music on visually induced motion sickness. Experimental Brain Research, 2020, 238, 2347-2358.	1.5	16
14	The effect of visual motion stimulus characteristics on vection and visually induced motion sickness. Displays, 2019, 58, 71-81.	3.7	50
15	Introducing the VIMSSQ: Measuring susceptibility to visually induced motion sickness. Proceedings of the Human Factors and Ergonomics Society, 2019, 63, 2267-2271.	0.3	17
16	Early cortical processing of vection-inducing visual stimulation as measured by event-related brain potentials (ERP). Displays, 2019, 58, 56-65.	3.7	9
17	Comparing simulator sickness in younger and older adults during simulated driving under different multisensory conditions. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 54, 47-62.	3.7	80
18	The Rubber Hand Illusion in Healthy Younger and Older Adults. Multisensory Research, 2018, 31, 537-555.	1.1	15

BEHRANG KESHAVARZ

#	Article	IF	CITATIONS
19	Discussion Panel: Motion Sickness in Virtual Environments. Proceedings of the Human Factors and Ergonomics Society, 2018, 62, 2043-2046.	0.3	1
20	Estimating the relative weights of visual and auditory tau versus heuristic-based cues for time-to-contact judgments in realistic, familiar scenes by older and younger adults. Attention, Perception, and Psychophysics, 2017, 79, 929-944.	1.3	22
21	Effect of Different Display Types on Vection and Its Interaction With Motion Direction and Field Dependence. I-Perception, 2017, 8, 204166951770776.	1.4	25
22	Examining the Effect of Age on Visual–Vestibular Self-Motion Perception Using a Driving Paradigm. Perception, 2017, 46, 566-585.	1.2	15
23	The efficacy of airflow and seat vibration on reducing visually induced motion sickness. Experimental Brain Research, 2017, 235, 2811-2820.	1.5	69
24	Passive restraint reduces visually induced motion sickness in older adults Journal of Experimental Psychology: Applied, 2017, 23, 85-99.	1.2	28
25	Age Differences in Visual-Auditory Self-Motion Perception during a Simulated Driving Task. Frontiers in Psychology, 2016, 7, 595.	2.1	15
26	Exploring Behavioral Methods to Reduce Visually Induced Motion Sickness in Virtual Environments. Lecture Notes in Computer Science, 2016, , 147-155.	1.3	22
27	The role of age and postural stability for visually induced motion sickness in a simulated driving task. Proceedings of the Human Factors and Ergonomics Society, 2015, 59, 770-770.	0.3	2
28	Vection and visually induced motion sickness: how are they related?. Frontiers in Psychology, 2015, 6, 472.	2.1	212
29	Vection lies in the brain of the beholder: EEG parameters as an objective measurement of vection. Frontiers in Psychology, 2015, 6, 1581.	2.1	23
30	Visually induced motion sickness can be alleviated by pleasant odors. Experimental Brain Research, 2015, 233, 1353-1364.	1.5	57
31	Demonstrating the Potential for Dynamic Auditory Stimulation to Contribute to Motion Sickness. PLoS ONE, 2014, 9, e101016.	2.5	24
32	Pleasant music as a countermeasure against visually induced motion sickness. Applied Ergonomics, 2014, 45, 521-527.	3.1	78
33	Combined effects of auditory and visual cues on the perception of vection. Experimental Brain Research, 2014, 232, 827-836.	1.5	59
34	Integration of sensory information precedes the sensation of vection: A combined behavioral and event-related brain potential (ERP) study. Behavioural Brain Research, 2014, 259, 131-136.	2.2	33
35	Illusory Self-Motion in Virtual Environments. Human Factors and Ergonomics, 2014, , 435-465.	0.0	28
36	Stereoscopic Viewing Enhances Visually Induced Motion Sickness but Sound Does Not. Presence: Teleoperators and Virtual Environments, 2012, 21, 213-228.	0.6	48

BEHRANG KESHAVARZ

#	Article	IF	CITATIONS
37	Visually induced motion sickness and presence in videogames: The role of sound. Proceedings of the Human Factors and Ergonomics Society, 2012, 56, 1763-1767.	0.3	24
38	Axis Rotation and Visually Induced Motion Sickness: The Role of Combined Roll, Pitch, and Yaw Motion. Aviation, Space, and Environmental Medicine, 2011, 82, 1023-1029.	0.5	40
39	Intra-visual conflict in visually induced motion sickness. Displays, 2011, 32, 181-188.	3.7	49
40	Validating an Efficient Method to Quantify Motion Sickness. Human Factors, 2011, 53, 415-426.	3.5	344
41	Age-Correlated Incremental Consideration of Velocity Information in Relative Time-to-Arrival Judgments. Ecological Psychology, 2010, 22, 212-221.	1.1	8
42	The Effects of Prescribed Analgesics on Driving. Canadian Journal of Pain, 0, , .	1.7	0