Wantai Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6110667/publications.pdf

Version: 2024-02-01

254 papers 5,617 citations

36 h-index 61 g-index

256 all docs

256 docs citations

256 times ranked

6395 citing authors

#	Article	IF	Citations
1	Solvent-free preparation of uniform styrene/maleimide copolymer microspheres from solid poly(styrene- <i>alt</i> -maleic anhydride) microspheres. Polymer Chemistry, 2022, 13, 684-692.	1.9	8
2	Radical homopolymerization of vinyl ethers activated by Li ⁺ -ï∈ complexation in the presence of CH ₃ OLi and Lil. Polymer Chemistry, 2022, 13, 1098-1106.	1.9	3
3	Three-dimensional protein microarrays fabricated on reactive microsphere modified COC substrates. Journal of Materials Chemistry B, 2022, 10, 293-301.	2.9	2
4	Precise Synthesis of Structurally Diverse Aggregation-Induced Emission-Active Polyacrylates by Cu(0)-Catalyzed SET-LRP with Macromolecular Structure-Correlated Emission. Macromolecules, 2022, 55, 2911-2923.	2.2	7
5	Novel Bismaleimide Porous Polymer Microsphere by Self-Stabilized Precipitation Polymerization and Its Application for Catalytic Microreactors. Macromolecules, 2022, 55, 3723-3733.	2.2	11
6	A Facile Method for Delaying the Migration of Antifogging Agents in Polyethylene Films. Industrial & Engineering Chemistry Research, 2022, 61, 6945-6956.	1.8	4
7	Covalently Attaching Hollow Silica Nanoparticles on a COC Surface for the Fabrication of a Three-Dimensional Protein Microarray. Biomacromolecules, 2022, 23, 2614-2623.	2.6	5
8	Limoneneâ€derived hollow polymer particles: Preparation and application for the removal of dyes and heavy metal ions. Journal of Polymer Science, 2022, 60, 2572-2581.	2.0	2
9	Surface engineering of Si wafers with tunable surface morphology and stiffness via visible light induced t <scp>hiolâ€ene</scp> click polymerization with 4â€(<i>N</i> , <i>N</i> ,6) Applied Polymer Science. 2022. 139	1.3	2
10	A facile approach for the preparation of poly(benzothiophene- <i>alt</i> maleic anhydride) microspheres by self-stabilized precipitation polymerization. Polymer Chemistry, 2022, 13, 4054-4063.	1.9	5
11	Synthesis of poly(vinyl chloride)- <i>co</i> -poly(acrylic acid) by precipitation polymerization and its usage as CaCO ₃ modifier in rigid PVC composites. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 557-566.	1.2	5
12	Preparation of a poly (PEGDAâ€∢i>co⟨li>â€GMA) thin hydrogel matrix for oligonucleotide microarray applications. Journal of Chemical Technology and Biotechnology, 2021, 96, 1902-1908.	1.6	8
13	UV-Assisted Li ⁺ -Catalyzed Radical Grafting Polymerization of Vinyl Ethers: A New Strategy for Creating Hydrolysis-Resistant and Long-Lived Polymer Brushes as a "Smart―Surface Coating. Langmuir, 2021, 37, 4102-4111.	1.6	7
14	Synthesis and Characterization of a Novel Kind of Water-Soluble Macromolecular Photoinitiators and Their Application for the Preparation of Water-Soluble Branched Polymers. Industrial & Engineering Chemistry Research, 2021, 60, 7755-7763.	1.8	5
15	Self-Stable Precipitation Polymerization Molecular Entanglement Effect and Molecular Weight Simulations and Experiments. Polymers, 2021, 13, 2243.	2.0	1
16	Water-Soluble Branched Polyacrylamides Prepared by UV-Initiated Polymerization Using a Novel Kind of Water-Soluble Macromolecular Photoinitiator. Industrial & Engineering Chemistry Research, 2021, 60, 12166-12174.	1.8	4
17	A novel hollow microsphere acting on crystallization, mechanical, and thermal performance of poly(3â€hydroxybutyrateâ€coâ€4â€hydroxybutyrate). Polymer Crystallization, 2021, 4, e10204.	0.5	2
18	A Versatile Strategy to Coat Individual Cell with Fully/Partially Covered Shell for Preparation of Self-Propelling Living Cells. ACS Nano, 2021, 15, 15920-15929.	7.3	12

#	Article	IF	CITATIONS
19	Coreâ€"Shell Fluorescent Polymeric Particles with Tunable White Light Emission Based on Aggregation Microenvironment Manipulation. Angewandte Chemie - International Edition, 2021, 60, 25246-25251.	7.2	15
20	High performance low-k and wave-transparent cyanate ester resins modified with a novel bismaleimide hollow polymer microsphere. Composites Part B: Engineering, 2021, 222, 109041.	5.9	26
21	Highly Heat-Resistant Poly(bismaleimide- <i>co</i> -styrene) Microspheres Bearing Maleimide Functional Groups by Self-Stabilized Precipitation Polymerization. Industrial & Description of the Stabilized Precipitation Polymerization. Industrial & Description of the Stabilized Precipitation Polymerization. Industrial & Description of the Stabilized Precipitation of the Stabilized Prec	1.8	17
22	Fluorescence Selfâ€Reporting Precipitation Polymerization Based on Aggregationâ€Induced Emission for Constructing Optical Nanoagents. Angewandte Chemie, 2020, 132, 10208-10214.	1.6	15
23	Fluorescence Selfâ€Reporting Precipitation Polymerization Based on Aggregationâ€Induced Emission for Constructing Optical Nanoagents. Angewandte Chemie - International Edition, 2020, 59, 10122-10128.	7.2	47
24	Antibacterial hydrogel coating: Strategies in surface chemistry. Advances in Colloid and Interface Science, 2020, 285, 102280.	7.0	102
25	Preparation of Styrene–Maleic Anhydride–Acrylamide Terpolymer Particles of Uniform Size and Controlled Composition via Self-Stabilized Precipitation Polymerization. Industrial & Engineering Chemistry Research, 2020, 59, 15087-15097.	1.8	21
26	Facile fabrication of shell crosslinked microcapsule by visible light induced graft polymerization for enzyme encapsulation. Chemical Communications, 2020, 56, 6862-6865.	2.2	5
27	Polythioethers with Controlled α,ωâ€End Groups Prepared by Visible Light Induced Thiol–Ene Click Polymerization of Dithiol and Divinyl Ether with 4â€(N , N â€diphenylamino)benzaldehyde as Organocatalyst. Macromolecular Chemistry and Physics, 2020, 221, 1900557.	1.1	5
28	Surface Engineering of Organic Polymers by Photoâ€induced Free Radical Coupling with <i>p</i> â€Dimethylaminophenyl Group as A Synthesis Block. ChemistrySelect, 2020, 5, 3365-3373.	0.7	2
29	The Application of a Novel Char Source From Petroleum Refining Waste in Flame Retardant Thermoplastic Polyurethane. Polymer Engineering and Science, 2020, 60, 1029-1034.	1.5	17
30	Enhanced dielectric properties of sandwichâ€structured biaxially oriented polypropylene by grafting hyperâ€branched aromatic polyamide as surface layers. Journal of Applied Polymer Science, 2020, 137, 48990.	1.3	18
31	Effects of divinylbenzeneâ€maleic anhydride copolymer hollow microspheres on crystallization behaviors, mechanical properties and heat resistance of poly(lâ€lactide acid). Polymers for Advanced Technologies, 2020, 31, 817-826.	1.6	10
32	Facile Surface Functionalization of Cyclic Olefin Copolymer Film with Anhydride Groups for Protein Microarray Fabrication. ACS Applied Bio Materials, 2020, 3, 3203-3209.	2.3	10
33	Aromatic thioketone-mediated radical polymerization of methacrylates and the preparation of amphiphilic <i>quasi</i> -block copolymers. Polymer Chemistry, 2020, 11, 3251-3259.	1.9	3
34	Anomalously Shaped Functional Particles Prepared by Thiol-Isocyanate Off-Stoichiometric Click Dispersion Polymerization. Langmuir, 2020, 36, 14417-14424.	1.6	2
35	Highly Transparent Cyclic Olefin Copolymer Film with a Nanotextured Surface Prepared by One-Step Photografting for High-Density DNA Immobilization. ACS Applied Materials & December 2019, 11, 28690-28698.	4.0	7
36	Layered Co-Immobilization of \hat{l}^2 -Glucosidase and Cellulase on Polymer Film by Visible-Light-Induced Graft Polymerization. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44913-44921.	4.0	25

#	Article	IF	CITATIONS
37	Effect of neighboring groups on the pH responsive adsorption/desorption behaviors of carboxylate functionalized hollow polymer particles. Journal of Polymer Science Part A, 2019, 57, 1404-1413.	2.5	3
38	Visible Light–Induced RAFT Polymerization of Methacrylate with 4â€(N , N â€diphenylamino)benzaldehyde as Organophotoredox Catalyst and the Effect of Temperature on the Polymerization. Macromolecular Chemistry and Physics, 2019, 220, 1900022.	1.1	6
39	Controlled Radical Polymerization of Vinyl Chloride Mediated by Xanthene-9-Thione. Industrial & Engineering Chemistry Research, 2019, 58, 21864-21871.	1.8	5
40	Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors. Journal of Materials Chemistry A, 2018, 6, 9245-9256.	5.2	156
41	Charged End-Group Terminated Poly(<i>N</i> -isopropylacrylamide)- <i>b</i> -poly(carboxylic azo) with Unusual Thermoresponsive Behaviors. Macromolecules, 2018, 51, 3290-3298.	2.2	27
42	Mechanically robust double-crosslinked network functionalized graphene/polyaniline stiff hydrogels for superior performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 8568-8578.	5.2	74
43	Decorating an individual living cell with a shell of controllable thickness by cytocompatible surface initiated graft polymerization. Chemical Communications, 2018, 54, 4677-4680.	2.2	15
44	<i>In situ</i> synthesis of diblock copolymer nano-assemblies <i>via</i> dispersion RAFT polymerization induced self-assembly and Ag/copolymer composite nanoparticles thereof. Polymer Chemistry, 2018, 9, 1082-1094.	1.9	28
45	Preparation of toughened polypropyleneâ€∢i>gàê€poly(butyl acrylateâ€∢i>coâ€acrylated castor oil) by suspension grafting polymerization. Polymer Engineering and Science, 2018, 58, 86-93.	1.5	4
46	A mild route to entrap papain into cross-linked PEG microparticles via visible light-induced inverse emulsion polymerization. Journal of Materials Science, 2018, 53, 880-891.	1.7	12
47	Visible lightâ€induced RAFT polymerization of methacrylates with benzaldehyde derivatives as organophotoredox catalysts. Journal of Polymer Science Part A, 2018, 56, 229-236.	2.5	17
48	Immobilization of cellulase on styrene/maleic anhydride copolymer nanoparticles with improved stability against pH changes. Chemical Engineering Journal, 2018, 336, 152-159.	6.6	73
49	<i>In situ</i> synthesis of PAA- <i>b</i> -PSt nano-assemblies <i>via</i> dispersion RAFT polymerization: effects of PEG in the medium. New Journal of Chemistry, 2018, 42, 19353-19356.	1.4	6
50	Sequential co-immobilization of \hat{l}^2 -glucosidase and yeast cells on single polymer support for bioethanol production. Science China Chemistry, 2018, 61, 1600-1608.	4.2	4
51	Polymer Materials Research at CMSE. Macromolecular Rapid Communications, 2018, 39, 1800683.	2.0	0
52	Synthesis and Properties of Non-isocyanate Crystallizable Aliphatic Thermoplastic Polyurethanes. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 1275-1280.	0.4	3
53	Cytocompatible Fabrication of Yeast Cells/Fabrics Composite Sheet for Bioethanol Production. Macromolecular Rapid Communications, 2018, 39, e1800212.	2.0	2
54	Extremely High Glass Transition Temperature Hydrocarbon Polymers Prepared through Cationic Cyclization of Highly 3,4â€Regulated Poly(Phenylâ€1,3â€Butadiene). Macromolecular Rapid Communications, 2018, 39, e1800298.	2.0	12

#	Article	IF	CITATIONS
55	Visibleâ€light induced RAFT polymerization of styrenic monomers with aromatic aldehydes as organophotoredox catalysts. Journal of Polymer Science Part A, 2018, 56, 2072-2079.	2.5	11
56	Nacre-like laminate nitrogen-doped porous carbon/carbon nanotubes/graphene composite for excellent comprehensive performance supercapacitors. Nanoscale, 2018, 10, 15229-15237.	2.8	19
57	High-Performance Biomass-Based Flexible Solid-State Supercapacitor Constructed of Pressure-Sensitive Lignin-Based and Cellulose Hydrogels. ACS Applied Materials & Diterfaces, 2018, 10, 22190-22200.	4.0	141
58	Self-Stabilized Precipitation Polymerization and Its Application. Research, 2018, 2018, 9370490.	2.8	38
59	Combined chain- and step-growth dispersion polymerization toward PSt particles with soft, clickable patches. Polymer Chemistry, 2017, 8, 1404-1416.	1.9	15
60	Photoinduced controlled radical polymerization of methacrylates with benzaldehyde derivatives as organic catalysts. Polymer Chemistry, 2017, 8, 3574-3585.	1.9	31
61	Dualâ€Functionalized Hollow Polymer Particle as a <scp>pH</scp> â€Responsive Adsorbent for Selective Removal of Basic Dye. Chinese Journal of Chemistry, 2017, 35, 596-604.	2.6	10
62	Separated Immobilization of Incompatible Enzymes on Polymer Substrate via Visible Light Induced Living Photografting Polymerization. Langmuir, 2017, 33, 5577-5584.	1.6	10
63	Investigation on terpolymer of ethylene/propylene/i‰-bromo-l±-olefins catalyzed by titanium complexes. Journal of Materials Science, 2017, 52, 5981-5991.	1.7	6
64	Anionic polymerization of <i>p</i> -(2,2′-diphenylethyl)styrene and applications to graft copolymers. Designed Monomers and Polymers, 2017, 20, 66-73.	0.7	0
65	A novel radical polymerization system initiated by a redox reaction with NHPI and xanthone. Polymer Chemistry, 2017, 8, 6356-6361.	1.9	6
66	Hexamethylphosphoramide as a highly reactive catalyst for the reversible-deactivation radical polymerization of MMA with an in situ formed alkyl iodide initiator. Polymer Chemistry, 2017, 8, 6073-6085.	1.9	14
67	High-Glass-Transition-Temperature Hydrocarbon Polymers Produced through Cationic Cyclization of Diene Polymers with Various Microstructures. Macromolecules, 2017, 50, 7498-7508.	2.2	18
68	Synthesis of hypergrafted poly [4-(N,N-diphenylamino) methylstyrene] through tandem anionic-radical polymerization of radical-inimer. Designed Monomers and Polymers, 2017, 20, 476-484.	0.7	2
69	Highly Active Copolymerization of Ethylene and N-Acetyl-O-(ω-Alkenyl)-l-Tyrosine Ethyl Esters Catalyzed by Titanium Complex. Polymers, 2016, 8, 64.	2.0	2
70	Study on Hydrogen Sensitivity of Ziegler–Natta Catalysts with Novel Cycloalkoxy Silane Compounds as External Electron Donor. Polymers, 2016, 8, 433.	2.0	7
71	Visible lightâ€induced thiolâ€ene reaction: A new strategy to prepare Îʻ,ï‰â€dithiol and Îʻ,ï‰â€divinyl telechelic polythiolether oligomers. Journal of Polymer Science Part A, 2016, 54, 740-749.	2.5	16
72	Electroactive biopolymer/graphene hydrogels prepared for high-performance supercapacitor electrodes. Electrochimica Acta, 2016, 211, 941-949.	2.6	42

#	Article	IF	CITATIONS
73	Emulsion copolymerization of substituted acetylenes for constructing optically active helical polymer nanoparticles. Synergistic effects and helicity inversion. Journal of Polymer Science Part A, 2016, 54, 1679-1685.	2.5	4
74	Stabilizer-free precipitation copolymerization of renewable bio-based \hat{l}_{\pm} -methylene- \hat{l}_{\pm} -butyrolactone and styrene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 484-491.	1.2	14
75	Mechanochromic Switches: A Supramoleculeâ€Triggered Mechanochromic Switch of Cyclodextrinâ€Jacketed Rhodamine and Spiropyran Derivatives (Adv. Funct. Mater. 3/2016). Advanced Functional Materials, 2016, 26, 467-467.	7.8	0
76	Effective approach towards Si-bilayer-IDA modified CoFe2O4 magnetic nanoparticles for high efficient protein separation. Colloids and Surfaces B: Biointerfaces, 2016, 146, 468-474.	2.5	26
77	Net-Immobilization of β-glucosidase on Nonwoven Fabrics to Lower the Cost of "Cellulosic Ethanol― and Increase Cellulose Conversions. Scientific Reports, 2016, 6, 23437.	1.6	9
78	Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes. Journal of Power Sources, 2016, 319, 73-81.	4.0	177
79	Super-adsorbent material based on functional polymer particles with a multilevel porous structure. NPG Asia Materials, 2016, 8, e301-e301.	3.8	98
80	Hierarchical PEG-Based 3D Patterns Grafting from Polymer Substrate by Surface Initiated Visible Light Photolithography. Macromolecular Rapid Communications, 2016, 37, 1611-1617.	2.0	4
81	Tunable Morphology of Spiropyran Assemblies: From Nanospheres to Nanorods. Chemistry - an Asian Journal, 2016, 11, 3102-3106.	1.7	19
82	Structure of functionalized nitrogen-doped graphene hydrogels derived from isomers of phenylenediamine and graphene oxide based on their high electrochemical performance. Electrochimica Acta, 2016, 212, 828-838.	2.6	38
83	A Cyanine Dye Encapsulated Porous Fibrous Mat for Nakedâ€Eye Ammonia Sensing. Chemistry - an Asian Journal, 2016, 11, 2316-2321.	1.7	20
84	Visible-light induced controlled radical polymerization of methacrylates with Cu(dap) ₂ Cl as a photoredox catalyst. Polymer Chemistry, 2016, 7, 4226-4236.	1.9	22
85	Ammonium-Functionalized Hollow Polymer Particles As a pH-Responsive Adsorbent for Selective Removal of Acid Dye. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16690-16698.	4.0	126
86	A Supramoleculeâ€Triggered Mechanochromic Switch of Cyclodextrinâ€Jacketed Rhodamine and Spiropyran Derivatives. Advanced Functional Materials, 2016, 26, 353-364.	7.8	81
87	Development of an Amino Acidâ€Functionalized Fluorescent Nanocarrier to Deliver a Toxin to Kill Insect Pests. Advanced Materials, 2016, 28, 1375-1380.	11.1	63
88	Copolymers of Ethylene and Vinyl Amino Acidic Ester with High Molecular Weight Prepared by Non-metallocene Catalysts. Catalysis Letters, 2016, 146, 609-619.	1.4	6
89	Control of cross-linking and reactions in one-step dispersion polymerization toward particles with combined anisotropies. Polymer Chemistry, 2016, 7, 2728-2739.	1.9	16
90	Synthesis and properties of non-isocyanate thermoplastic polyurethanes containing dibutylene terephthalate units. Journal of Polymer Research, 2016, 23, 1.	1.2	3

#	Article	IF	Citations
91	Fluorescent supramolecular micelles for imaging-guided cancer therapy. Nanoscale, 2016, 8, 5302-5312.	2.8	32
92	Flexible /PET/batio ₃ / layer–layer composite film with enhanced dielectric properties fabricated by highly loaded /batio ₃ / coating with acrylic resin as binder. Journal of Applied Polymer Science, 2015, 132, .	1.3	3
93	Optically active helical polymers with pendent thiourea groups: Chiral organocatalyst for asymmetric michael addition reaction. Journal of Polymer Science Part A, 2015, 53, 1816-1823.	2.5	20
94	(Co)polymerization of ethylene via nonmetallocene catalysts with diphenyl phosphoroso schiffâ€base ligand. Journal of Applied Polymer Science, 2015, 132, .	1.3	2
95	A novel polymer chain growing mode and styrene copolymer prepared with low molecular weight copolymer of αâ€methylstyrene and styrene as macroinitiator. Journal of Applied Polymer Science, 2015, 132, .	1.3	1
96	Copolymerization of Ethylene and Vinyl Amino Acidic Ester Catalyzed by Titanium and Zirconium Complexes. Catalysts, 2015, 5, 1831-1845.	1.6	5
97	Molecular Size, Shape, and Electric Charges: Essential for Perylene Bisimide-Based DNA Intercalator to Localize in Cell Nuclei and Inhibit Cancer Cell Growth. ACS Applied Materials & Samp; Interfaces, 2015, 7, 9784-9791.	4.0	28
98	Influences for preparation of PMMA-b-PtBA block copolymer mediated by DPE-containing macroinitiator. Journal of Polymer Research, 2015, 22, 1.	1.2	3
99	Facile synthesis of core-shell, multiple compartment anisotropic particles via control of cross-linking and continuous phase separations in one-pot dispersion polymerization. Colloid and Polymer Science, 2015, 293, 523-532.	1.0	9
100	Facile synthesis of core–shell/hollow anisotropic particles via control of cross-linking during one-pot dispersion polymerization. Journal of Colloid and Interface Science, 2015, 445, 268-276.	5.0	16
101	Direct One-Pot Synthesis of Chemically Anisotropic Particles with Tunable Morphology, Dimensions, and Surface Roughness. Langmuir, 2015, 31, 925-936.	1.6	19
102	Aliphatic thermoplastic polyurethane-ureas and polyureas synthesized through a non-isocyanate route. RSC Advances, 2015, 5, 6843-6852.	1.7	36
103	Preparation of core–shell particles by surface-initiated cycloketyl radical mediated living polymerization. Polymer Chemistry, 2015, 6, 6664-6670.	1.9	8
104	A supramolecular nanovehicle toward systematic, targeted cancer and tumor therapy. Chemical Science, 2015, 6, 5511-5518.	3.7	26
105	Visible Light-Controlled Radical Polymerization of Propargyl Methacrylate Activated by a Photoredox Catalyst <i>fac</i> -[Ir(ppy) ₃]. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 761-769.	1.2	17
106	A General Strategy for Nanohybrids Synthesis via Coupled Competitive Reactions Controlled in a Hybrid Process. Scientific Reports, 2015, 5, 9189.	1.6	31
107	A Light-Triggered Switch Based on Spiropyran/Layered Double Hydroxide Ultrathin Films. Journal of Physical Chemistry C, 2015, 119, 7428-7435.	1.5	16
108	Chiral, fluorescent microparticles constructed by optically active helical substituted polyacetylene: preparation and enantioselective recognition ability. RSC Advances, 2015, 5, 26236-26245.	1.7	18

#	Article	IF	Citations
109	New Chemistries and Technologies Derived from a Common Reaction of αâ€Methylstyrene at 61 °C. Macromolecular Reaction Engineering, 2015, 9, 490-502.	0.9	2
110	Spiropyran-induced one-dimensional cyclodextrin microcrystals with light-driven fluorescence change. Journal of Materials Chemistry C, 2015, 3, 8519-8525.	2.7	32
111	Polymerization Mechanism in the Presence of 1,1â€Diphenylethylene Part 2: Synthesis and Characterization of PMA and PSt. Macromolecular Chemistry and Physics, 2015, 216, 2202-2210.	1.1	4
112	Multiple levels hydrophobic modification of polymeric substrates by UVâ€grafting polymerization with TFEMA as monomer. Journal of Polymer Science Part A, 2014, 52, 1059-1067.	2.5	15
113	Chemoselective Phototransformation of CH Bonds on a Polymer Surface through a Photoinduced Cerium Recycling Redox Reaction. Chemistry - A European Journal, 2014, 20, 11421-11427.	1.7	3
114	Optically active helical polyacetylene/Fe ₃ O ₄ composite microspheres: prepared by precipitation polymerization and used for enantioselective crystallization. RSC Advances, 2014, 4, 63611-63619.	1.7	22
115	Preparation of PMMA- <i>b</i> -PSt Block Copolymer via Seeded Emulsion Polymerization in the Presence of 1,1-Diphenylethylene. Macromolecular Reaction Engineering, 2014, 8, 555-563.	0.9	4
116	A Mild Strategy To Encapsulate Enzyme into Hydrogel Layer Grafted on Polymeric Substrate. Langmuir, 2014, 30, 15229-15237.	1.6	32
117	Visibleâ€Lightâ€Induced Controlled Polymerization of Hydrophilic Monomers with Ir(ppy) ₃ as a Photoredox Catalyst in Anisole. Macromolecular Chemistry and Physics, 2014, 215, 1012-1021.	1.1	32
118	Visible light-induced controlled radical polymerization of methacrylates with perfluoroalkyl iodide as the initiator in conjugation with a photoredox catalyst $\langle i \rangle fac\langle i \rangle -[Ir(ppy)] \langle sub \rangle 3\langle sub \rangle$. Journal of Polymer Science Part A, 2014, 52, 3283-3291.	2.5	30
119	Radical polymerization of methyl methacrylate with ethane-1,1,2-triyltribenzene as an initiator and ethane-1,1,2-triyltribenzene-end polymers as macroinitiators. Colloid and Polymer Science, 2014, 292, 257-265.	1.0	4
120	Hydroxylation of Organic Polymer Surface: Method and Application. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3759-3770.	4.0	42
121	A Facile Visibleâ€Lightâ€Induced Route to Functionalize Polymeric Substrates by Combining Controlled Radical Grafting Polymerization and Thiolâ^'Yne Click Chemistry with Photoredox Catalyst Ir(ppy) ₃ . Macromolecular Chemistry and Physics, 2014, 215, 1378-1387.	1.1	18
122	Reversible-deactivation radical polymerization of chloroprene and the synthesis of novel polychloroprene-based block copolymers by the RAFT approach. RSC Advances, 2014, 4, 55529-55538.	1.7	14
123	Radical Polymerization of TFEMA and Relationship Between Surface Hydrophobicity and Molecular Weight of Poly-TFEMA. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 263-270.	1.2	4
124	A multifunctional perylenediimide derivative (DTPDI) can be used as a recyclable specific Hg2+ ion sensor and an efficient DNA delivery carrier. Journal of Materials Chemistry B, 2014, 2, 2093-2096.	2.9	71
125	An extremely simple method for fabricating 3D protein microarrays with an anti-fouling background and high protein capacity. Lab on A Chip, 2014, 14, 2505-2514.	3.1	21
126	Spatiotemporal-resolved nanoparticle synthesis via simple programmed microfluidic processes. RSC Advances, 2014, 4, 34179.	1.7	33

#	Article	IF	CITATIONS
127	Facile Synthesis of Fluorescent Silica-Doped Polyvinylpyrrolidone Composites: From Cross-Linked Composite Film to Core–Shell Nanoparticles. Industrial & Engineering Chemistry Research, 2014, 53, 2872-2877.	1.8	2
128	Nucleophilic Substitution of Tetrachloroperylene Diimide in Fluorescent Polyvinylpyrrolidone Film. Macromolecular Chemistry and Physics, 2014, 215, 493-498.	1.1	5
129	Poly(divinylbenzene- <i>alt</i> -maleic anhydride) nanoparticles as a novel stabilizer for Pickering polymerization of styrene. Journal of Polymer Science Part A, 2014, 52, 2894-2898.	2.5	10
130	Crystallizable and tough aliphatic thermoplastic poly(ether urethane)s synthesized through a non-isocyanate route. RSC Advances, 2014, 4, 43406-43414.	1.7	42
131	Construction of DNA microarrays on cyclic olefin copolymer surfaces using confined photocatalytic oxidation. RSC Advances, 2014, 4, 46653-46661.	1.7	8
132	Simplified TERP to achieve living free radical polymerization with crude ethyl 2-phenyltellanyl-2-methylpropionate as mediator. Polymer Bulletin, 2014, 71, 1797-1811.	1.7	1
133	Radical polymerization of methyl methacrylate with 2,2,3-triphenylpropanoic acid as an initiator. Colloid and Polymer Science, 2014, 292, 1469-1474.	1.0	2
134	Synthesis and characterization of aliphatic segmented poly(ether amide urethane)s through a non-isocyanate route. RSC Advances, 2014, 4, 23720.	1.7	33
135	Synthesis of cleavable multi-functional mikto-arm star polymer by RAFT polymerization: example of an anti-cancer drug 7-ethyl-10-hydroxycamptothecin (SN-38) as functional moiety. Science China Chemistry, 2014, 57, 995-1001.	4.2	17
136	High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors. Journal of Materials Chemistry A, 2014, 2, 8859.	5 . 2	95
137	Synthesis and characterization of aliphatic poly(amide urethane)s having different nylon 6 segments through non-isocyanate route. Journal of Polymer Research, 2014, 21, 1.	1.2	24
138	PEG Molecular Net-Cloth Grafted on Polymeric Substrates and Its Bio-Merits. Scientific Reports, 2014, 4, 4982.	1.6	21
139	lodoformâ€mediated free radical emulsion polymerization of chloroprene. Journal of Applied Polymer Science, 2013, 128, 2291-2296.	1.3	8
140	Surface Chemoselective Phototransformation of Câ€"H Bonds on Organic Polymeric Materials and Related High-Tech Applications. Chemical Reviews, 2013, 113, 5547-5594.	23.0	100
141	Volume shrinkage of UV-curable coating formulation investigated by real-time laser reflection method. Journal of Coatings Technology Research, 2013, 10, 231-237.	1.2	29
142	Rapid photopolymerization of octadecyl methacrylate in the solid state. New Journal of Chemistry, 2013, 37, 444-450.	1.4	12
143	Optically active, magnetic gels consisting of helical substituted polyacetylene and Fe3O4 nanoparticles: preparation and chiral recognition ability. Journal of Materials Chemistry C, 2013, 1, 8066.	2.7	30
144	Dynamic mechanical analysis of elastic modulus development of dental composites. Polymer Composites, 2013, 34, 580-586.	2.3	2

#	Article	IF	CITATIONS
145	Polymerization Mechanism of MMA in the Presence of 1,1â€Diphenylethylene. Macromolecular Chemistry and Physics, 2013, 214, 1688-1698.	1.1	10
146	Chiral polymeric microspheres grafted with optically active helical polymer chains: a new class of materials for chiral recognition and chirally controlled release. Polymer Chemistry, 2013, 4, 645-652.	1.9	38
147	A facile, green, versatile protocol to prepare polypropyleneâ€ <i>g</i> â€poly(methyl methacrylate) copolymer by waterâ€solid phase suspension grafting polymerization using the surface of reactor granule technology polypropylene granules as reaction loci. Journal of Applied Polymer Science, 2013, 129, 3170-3177.	1.3	13
148	Thiol–epoxy/thiol–acrylate hybrid materials synthesized by photopolymerization. Journal of Materials Chemistry C, 2013, 1, 4481.	2.7	78
149	The investigation of novel non-metallocene catalysts with phenoxy-imine ligands for ethylene (co-)polymerization. Polymer International, 2013, 62, 419-426.	1.6	7
150	Rapid solid-state photopolymerization of octadecyl acrylate: low shrinkage and insensitivity to oxygen. Polymer International, 2013, 62, 1692-1697.	1.6	21
151	Oneâ€Pot Synthesis of PTFEMAâ€∢i>b⟨ i>â€PMMAâ€∢i>b⟨ i>â€PTFEMA by Controlled Radical Polymerization wit Difunctional Initiator in Conjugation with Photoredox Catalyst of Ir(ppy)⟨sub>3⟨ sub> Under Visible Light. Macromolecular Chemistry and Physics, 2013, 214, 2624-2631.	th a 1.1	39
152	Preparation of poly(styreneâ€ <i>co</i> â€isobornyl methacrylate) beads having controlled glass transition temperature by suspension polymerization. Journal of Applied Polymer Science, 2013, 129, 113-120.	1.3	14
153	Preparation of Styrene–Maleic Anhydride Random Copolymer by Stabilizer-Free Dispersion Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 1061-1069.	1.2	16
154	Optically active thermosensitive amphiphilic polymer brushes based on helical polyacetylene: preparation through "click―onto grafting method and self-assembly. Polymer Bulletin, 2012, 69, 1023-1040.	1.7	13
155	Thermostable Microspheres Consisting of Poly(<i>N</i> -phenylmaleimide- <i>co</i> -α-methyl styrene) Prepared by Precipitation Polymerization. Industrial & Engineering Chemistry Research, 2012, 51, 15610-15617.	1.8	16
156	Postsynthetic Lithium Modification of Covalent-Organic Polymers for Enhancing Hydrogen and Carbon Dioxide Storage. Journal of Physical Chemistry C, 2012, 116, 5974-5980.	1.5	95
157	Heat-resistant poly(N-(1-phenylethyl)maleimide-co-styrene) microspheres prepared by dispersion polymerization. Journal of Materials Chemistry, 2012, 22, 6697.	6.7	10
158	Synthesis and characterization of Q-PEO-b-PVBC and Q-PEO-b-(PVBC-grad-PS) combined RAFT polymerization and post-polymerization quaternization. Journal of Polymer Research, 2012, 19, 1.	1.2	2
159	Copolymerization of ethylene with acrylonitrile promoted by novel nonmetallocene catalysts with phenoxyâ€mine ligands. Journal of Polymer Science Part A, 2012, 50, 2068-2074.	2.5	9
160	Preparation of polymer nanoparticles from renewable biobased furfuryl alcohol and maleic anhydride by stabilizerâ€free dispersion polymerization. Journal of Polymer Science Part A, 2012, 50, 3606-3617.	2.5	13
161	A remote photochemical reaction for surface modification of polymeric substrate. Journal of Polymer Science Part A, 2012, 50, 3698-3702.	2.5	4
162	Optically active core/shell nanoparticles prepared using selfâ€assembled polymer micelle as reactive nanoreactor. Journal of Polymer Science Part A, 2012, 50, 4415-4422.	2.5	6

#	Article	lF	Citations
163	Polymerization shrinkage of (meth)acrylate determined by reflective laser beam scanning. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 923-928.	2.4	38
164	Aqueous Emulsion Polymerization of Substituted Acetylenes: Effects of Organic Solvent and Analysis of Blue Shifts and Emulsion Polymerization Mechanism. Macromolecular Chemistry and Physics, 2012, 213, 603-609.	1.1	6
165	Oilâ€absorbent beads containing <i>β</i> â€cyclodextrin moieties: preparation via suspension polymerization and high oil absorbency. Polymers for Advanced Technologies, 2012, 23, 810-816.	1.6	27
166	Emulsion polymerization of styrene using irreversible addition–fragmentation chain transfer agents: effect on the course of the polymerization and molecular weight. Colloid and Polymer Science, 2012, 290, 719-729.	1.0	6
167	New route to monodispersed amphiphilic coreâ€shell polymer nanoparticles: Polymerization of styrene from αâ€methylstyreneâ€containing macroinitiator. Journal of Applied Polymer Science, 2012, 124, 4121-4126.	1.3	7
168	Preparation of Optically Active Nanoparticles by Emulsification of Preformed Helical Polymers. Macromolecular Chemistry and Physics, 2011, 212, 353-360.	1.1	9
169	Novel optically active helical poly(N-propargylthiourea)s: synthesis, characterization and complexing ability toward Fe(iii) ions. Polymer Chemistry, 2011, 2, 2825.	1.9	14
170	Optically Active Amphiphilic Polymer Brushes Based on Helical Polyacetylenes: Preparation and Self-Assembly into Core/Shell Particles. Macromolecules, 2011, 44, 736-743.	2.2	56
171	Optically Active Helical Substituted Polyacetylenes as Chiral Seeding for Inducing Enantioselective Crystallization of Racemic <i>N</i> -(<i>tert</i> -Butoxycarbonyl)alanine. Macromolecules, 2011, 44, 7109-7114.	2.2	32
172	Preparation of hydrophobic helical poly(N-propargylamide)s in aqueous medium via a monomer/cyclodextrin inclusion complex. Polymer Chemistry, 2011, 2, 694-701.	1.9	13
173	Chiral helical polyacetylene–vinyl polymer core/shell nanoparticles: preparation and application to optically active composite films. Colloid and Polymer Science, 2011, 289, 133-139.	1.0	8
174	Synthesis, structure characterization, and gas sensitive properties of a copolymer of aniline with phenol. Polymers for Advanced Technologies, 2011, 22, 1042-1048.	1.6	5
175	Fabrication of poly(acrylamide) hydrogels with gradient crosslinking degree via photoinitiation of thick polymer system. Polymers for Advanced Technologies, 2011, 22, 1442-1445.	1.6	4
176	Crystallization behavior of biodegradable poly(Lâ€lactide)/multiwalled carbon nanotubes nanocomposites from the amorphous state. Polymer Engineering and Science, 2011, 51, 1564-1573.	1.5	45
177	Functionalization of polymeric surfaces by simple photoactivation of CH bonds. Journal of Polymer Science Part A, 2011, 49, 2755-2760.	2.5	10
178	XPS and AFM characterization of the selfâ€assembled molecular monolayers of a 3â€aminopropyltrimethoxysilane on silicon surface, and effects of substrate pretreatment by UVâ€irradiation. Surface and Interface Analysis, 2011, 43, 1082-1088.	0.8	21
179	Hollow Twoâ€Layered Chiral Nanoparticles Consisting of Optically Active Helical Polymer/Silica: Preparation and Application for Enantioselective Crystallization. Advanced Functional Materials, 2011, 21, 2345-2350.	7.8	124
180	Degradation and initiation polymerization mechanism of αâ€methylstyreneâ€containing macroinitiators. Journal of Applied Polymer Science, 2011, 120, 466-473.	1.3	9

#	Article	IF	CITATIONS
181	Synthesis of wellâ€defined starâ€shaped organosiloxaneâ€functionalized polymethylmethacrylate promoted by epoxideâ€derived titanocene alkoxides via radical polymerization. Journal of Applied Polymer Science, 2011, 120, 1652-1658.	1.3	3
182	The architecture of hydroxyâ€functionalized aPSâ€bâ€random copolymerâ€bâ€PE via oneâ€pot strategy combini living free radical polymerization with coordination polymerization. Journal of Applied Polymer Science, 2011, 120, 3171-3179.	ng 1.3	3
183	Synthesis of Sub-100 nm Nanoparticles by Emulsifier-free Emulsion Polymerization of α-Methylstyrene, Methyl Methacrylate and Acrylic Acid. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 846-850.	1.2	7
184	A Novel Type of Mono-Substituted Polyacetylene: Synthesis and Characterization of Poly(N-Propargylthiourea)s. Designed Monomers and Polymers, 2011, 14, 143-154.	0.7	3
185	Interface-directed sol-gel: direct fabrication of the covalently attached ultraflat inorganic oxide pattern on functionalized plastics. Science China Chemistry, 2010, 53, 173-182.	4.2	13
186	An inkjet printing soft photomask and its application on organic polymer substrates. Science China Chemistry, 2010, 53, 1695-1704.	4.2	8
187	Concentration and temperature controlled oxidation and cutting of single-walled carbon nanotubes by ammonium persulfate. Science China Chemistry, 2010, 53, 2026-2032.	4.2	12
188	Photochemical modification of single-walled carbon nanotubes using HPHMP photoinitiator for enhanced organic solvent dispersion. Journal of Materials Science, 2010, 45, 5591-5597.	1.7	9
189	Synthesis of wellâ€defined comblike hydroxyâ€functionalized atactic polystyrene promoted by metallocene/tin/poly(phenyl glycidyl ether)â€ <i>co</i> â€formaldehyde. Journal of Applied Polymer Science, 2010, 116, 1574-1580.	1.3	0
190	Preparation of Monodisperse and Anionâ€Charged Polystyrene Microspheres Stabilized with Polymerizable Sodium Styrene Sulfonate by Dispersion Polymerization. Macromolecular Chemistry and Physics, 2010, 211, 744-751.	1.1	44
191	Copolymerization of ethylene with 1â€hexene promoted by novel multiâ€chelated nonâ€metallocene complexes with imine bridged imidazole ligand. Journal of Polymer Science Part A, 2010, 48, 417-424.	2.5	14
192	The preparation of amphiphilic coreâ€shell nanospheres by using waterâ€soluble macrophotoinitiator. Journal of Polymer Science Part A, 2010, 48, 936-942.	2.5	3
193	Nanoparticles consisting of optically active helical polymers: Preparation via aqueous catalytic miniemulsion polymerization and the effects of particles size on their optical activity. Journal of Polymer Science Part A, 2010, 48, 1661-1668.	2.5	25
194	Optically active composite nanoparticles with chemical bonds between core and shell. Journal of Polymer Science Part A, 2010, 48, 5611-5617.	2.5	11
195	Synthesis and chiral recognition of optically active hydrogels containing helical polymer chains. Polymer Chemistry, 2010, 1, 1030.	1.9	43
196	Effect of solvents on polymerization of N-propargylamide monomer and secondary structure of polymer. Polymer Chemistry, 2010, 1, 1633.	1.9	1
197	Hollow polymeric microspheres grafted with optically active helical polymer chains: Preparation and their chiral recognition ability. Journal of Materials Chemistry, 2010, 20, 781-789.	6.7	58
198	A Biomimetic Chemical Approach to Facile Preparation of Largeâ€Area, Patterned, ZnO Quantum Dot/Polymer Nanocomposites on Flexible Plastics. Macromolecular Chemistry and Physics, 2009, 210, 1519-1527.	1.1	14

#	Article	IF	Citations
199	Visible lightâ€induced living surface grafting polymerization for the potential biological applications. Journal of Polymer Science Part A, 2009, 47, 6852-6862.	2.5	34
200	Developments and new applications of UV-induced surface graft polymerizations. Progress in Polymer Science, 2009, 34, 156-193.	11.8	407
201	PMMA-containing ITX Residues and its Initiation for Synthesizing PMMA-b-PSt Copolymer. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 921-927.	1.2	4
202	Positive and Negative ZnO Micropatterning on Functionalized Polymer Surfaces. Small, 2008, 4, 1527-1536.	5.2	29
203	A kind of novel nonmetallocene catalysts for ethylene polymerization. Journal of Polymer Science Part A, 2008, 46, 33-37.	2.5	15
204	A novel type of optically active helical polymers: Synthesis and characterization of poly(<i>N</i> i>â€propargylureas). Journal of Polymer Science Part A, 2008, 46, 4112-4121.	2.5	60
205	Photoâ€induced polymerization of methyl methacrylate/cyclodextrin complex in aqueous solution. Polymers for Advanced Technologies, 2008, 19, 1649-1655.	1.6	4
206	Crystallization Kinetics and Hydrophilicity Improvement of Biodegradable Poly(butylene succinate) in its Miscible Blends with Poly(ethylene oxide). Macromolecular Materials and Engineering, 2008, 293, 930-938.	1.7	11
207	Functionalization of Multiâ€Walled Carbon Nanotubes by Thermoâ€Grafting with ⟨i⟩α⟨ i⟩â€Methylstyreneâ€Containing Copolymers. Macromolecular Rapid Communications, 2008, 29, 1521-1526.	2.0	15
208	Stability of poly(<i>N</i> â€propargylamide)s under ultraviolet irradiation. Journal of Applied Polymer Science, 2008, 107, 1924-1931.	1.3	2
209	Influence of Solvent on the Secondary Structure of Helical Poly(N-propargyl-(1R)-camphor-10-sulfamide). Polymer Journal, 2008, 40, 436-441.	1.3	9
210	Effects of Blend Composition and Crystallization Temperature on Unique Crystalline Morphologies of Miscible Poly(ethylene succinate)/Poly(ethylene oxide) Blends. Macromolecules, 2008, 41, 141-148.	2.2	58
211	Facile Fabrication of Monolayered Hollow Submicrospheres of PANI on Surfaces of Modified Polymer Films. Macromolecular Symposia, 2008, 261, 97-103.	0.4	1
212	Surface-initiated ring-opening polymerization of $\hat{l}\mu$ -caprolactone from the surface of PP film. Journal of Applied Polymer Science, 2007, 105, 877-884.	1.3	9
213	Photografting of unable-to-be-irradiated surfaces. II. Batch liquid-phase process by one-step method. Journal of Applied Polymer Science, 2007, 103, 118-124.	1.3	10
214	Synthesis, structure, and properties of syndiotactic polystyrene catalyzed by Cp*Ti(OBz)3/MAO/TIBA. Journal of Applied Polymer Science, 2007, 103, 501-505.	1.3	8
215	Oxidative graft polymerization of aniline on the modified surface of polypropylene films. Journal of Applied Polymer Science, 2007, 103, 2442-2450.	1.3	9
216	Nonisothermal crystallization kinetics of biodegradable poly(butylene succinate)/poly(vinyl phenol) blend. Journal of Applied Polymer Science, 2007, 104, 972-978.	1.3	15

#	Article	IF	CITATIONS
217	Novel tin-coupled star-shaped medium vinyl butadiene rubber. I. Arm number and its effect on properties. Journal of Applied Polymer Science, 2007, 104, 3917-3923.	1.3	7
218	Novel tin-coupled star-shaped medium vinyl butadiene rubber. II. Vinyl content, molecular weight, and their effects on properties. Journal of Applied Polymer Science, 2007, 104, 3924-3930.	1.3	5
219	Surface photografting polymerization of trimethylolpropane triacrylate onto LDPE substrate in tetrahydrofuran/water mixtures. Journal of Applied Polymer Science, 2007, 106, 621-629.	1.3	9
220	Biomimetic synthesis of gold nanoparticles and their aggregates using a polypeptide sequence. Applied Organometallic Chemistry, 2007, 21, 645-651.	1.7	41
221	Synthesis and Characterization of N-Propargyl Cinnamamide Polymers and Copolymers. Macromolecular Chemistry and Physics, 2007, 208, 316-323.	1.1	8
222	The Formation of a Stable, Helical Conformation in Poly(N-propargylamides) through Synergic Effects among their Pendent Groups. Macromolecular Chemistry and Physics, 2007, 208, 218-223.	1.1	20
223	A Novel Strategy for the Preparation of Reactively Compatibilized Polymer Blends with Oligomers Containing <i>l±</i> Methyl Styrene Units. Macromolecular Rapid Communications, 2007, 28, 2163-2169.	2.0	13
224	Covalently attached graft polymer monolayer on organic polymeric substrate via confined surface inhibition reaction. Journal of Polymer Science Part A, 2007, 45, 745-755.	2.5	2
225	Synthesis of optically active poly(N-propargylsulfamides) with helical conformation. Journal of Polymer Science Part A, 2007, 45, 500-508.	2.5	51
226	Helical and random coil conformations of N-propargylamide polymer and copolymers. Polymer International, 2007, 56, 1247-1253.	1.6	2
227	Preparation of highly reflective and conductive metallized polyimide films through surface modification: processing, morphology and properties. Journal of Materials Chemistry, 2006, 16, 310-316.	6.7	57
228	Synthesis of Amphiphilic Polystyrene-b-Poly(acrylic acid) Diblock Copolymers by Iodide-Mediated Radical Polymerization. Polymer Journal, 2006, 38, 387-394.	1.3	7
229	Synthesis of amphiphilic poly(methyl methacrylate)-block-poly(methacrylic acid) diblock copolymers by atom transfer radical polymerization. Polymer International, 2006, 55, 360-364.	1.6	11
230	Synthesis of comb-like polystyrene with poly(N-phenyl maleimide-alt-p-chloromethyl styrene) as macroinitiator. Journal of Polymer Science Part A, 2006, 44, 2069-2075.	2.5	27
231	Synthesis of diblock copolymers by combining stable free radical polymerization and atom transfer radical polymerization. Journal of Polymer Science Part A, 2006, 44, 2468-2475.	2.5	15
232	Grafting Polymerization of Acrylonitrile onto LDPE Film: Study on Grafting Chain Length and Density with UV-vis Spectroscopy. Polymer Bulletin, 2006, 57, 833-841.	1.7	5
233	Photografting of unable-to-be-irradiated surfaces. I. Batch vapor-phase process by one-step method. Journal of Applied Polymer Science, 2006, 101, 2269-2276.	1.3	14
234	A Facile Method for Grafting Polymerisation of Acrylonitrile onto LDPE Film with High Grafting Efficiency. Macromolecular Chemistry and Physics, 2006, 207, 75-80.	1,1	12

#	Article	IF	Citations
235	Detailed 1D/2D NMR Analyses of Benzophenone-Related Reaction Products from a Photopolymerization System of Vinyl Acetate and Benzophenone. Macromolecular Chemistry and Physics, 2006, 207, 2311-2320.	1.1	9
236	Direct Ion Exchange Self-Metallization: A Novel and Efficient Route for the Preparation of Double-Surface-Silvered Polyimide Films. Macromolecular Rapid Communications, 2006, 27, 372-376.	2.0	18
237	A Simple Method to Fabricate a Conductive Polymer Micropattern on an Organic Polymer Substrate. Macromolecular Rapid Communications, 2006, 27, 418-423.	2.0	15
238	One-Pot Fabrication of Supramolecular Polymer Particles via Situ Polymerization Stringed Assembly of a Two-Monomer Microemulsion. Macromolecular Rapid Communications, 2006, 27, 284-288.	2.0	9
239	Synthesis of Large-Area Three-Dimensional Polyaniline Nanowire Networks Using a ?Soft Template?. Macromolecular Rapid Communications, 2005, 26, 395-400.	2.0	88
240	Directly Fabricating Monolayer Nanoparticles on a Polymer Surface by UV-Induced MMA/DVB Microemulsion Graft Polymerization. Macromolecular Rapid Communications, 2005, 26, 87-92.	2.0	20
241	Facile Surface Superhydrophilic Modification: NVP/MBA Inverse Microemulsion Surface-Grafting Polymerization Initiated by UV Light. Macromolecular Rapid Communications, 2005, 26, 1788-1793.	2.0	20
242	A study on the synthesis, characterization and properties of polyaniline using acrylic acid as a primary dopant. I: polymerization and polymer. Polymers for Advanced Technologies, 2005, 16, 24-31.	1.6	31
243	A facile approach to surface graft vinyl acetate onto polyolefin articles. Polymers for Advanced Technologies, 2004, 15, 523-527.	1.6	21
244	Photoinitiated, inverse emulsion polymerization of acrylamide: Some mechanistic and kinetic aspects. Journal of Polymer Science Part A, 2004, 42, 846-852.	2.5	45
245	Nonaqueous dispersion polymerization of styrene in methanol with the ionomer block copolymer poly[(4-methylstyrene)-co-(4-vinyltriethylbenzyl ammonium bromide)]-b-polyisobutene as a stabilizer. Journal of Polymer Science Part A, 2004, 42, 2678-2685.	2.5	17
246	Synthesis and inhibition performance of a polymer-supported inhibitor. Journal of Polymer Science Part A, 2004, 42, 4074-4083.	2.5	8
247	Surface Photografting Polymerization of Methyl Methacrylate inN,N-dimethylformamide on Low Density Polyethylene Film. Macromolecular Chemistry and Physics, 2004, 205, 1096-1102.	1.1	17
248	MMA/DVB Emulsion Surface Graft Polymerization Initiated by UV Light. Langmuir, 2004, 20, 6225-6231.	1.6	20
249	Synthesis of polystyrene- block -polycarbonate- block - polystyrene and polycarbonate- graft -polystyrene using tandem condensation polymerization and atom transfer radical polymerization. Polymer Bulletin, 2003, 49, 321-328.	1.7	10
250	Method of preparing clean poly(4-methylstyrene)-block-polyisobutene by the combination of sequential monomer addition and sequential initiation in the solvent CH3Cl. Journal of Polymer Science Part A, 2003, 41, 408-412.	2.5	3
251	Synthesis and properties of the ionomer diblock copolymer poly(4-vinylbenzyl triethyl ammonium) Tj ETQq1	1 0.784314 rg 2.5	BT /Overloc
252	Copolymerization of Isobutene with 4-(2-Hydroxyl-2-methylpropyl) Styrene Co-initiated by TiCl4in the Presence of ED. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 345-356.	1.2	0

#	Article	IF	CITATIONS
253	Synthesis of Poly(IBâ€coâ€VBDC)â€gâ€PMMA via Photoâ€initiated Free Radical Graft Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 1147-1156.	1.2	2
254	Coreâ€Shell Fluorescent Polymeric Particles with Tunable White Light Emission Based on Aggregation Microenvironment Manipulation. Angewandte Chemie, 0, , .	1.6	1